Infinite eigenvalue assignment by an output feedback for singular systems
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 19-23.

Voir la notice de l'article provenant de la source Library of Science

The problem of an infinite eigenvalue assignment by an output feedback is considered. Necessary and sufficient conditions for the existence of a solution are established. A procedure for the computation of the output-feedback gain matrix is given and illustrated with a numerical example.
Keywords: infinite eigenvalue assignment, feedback, singular system
Mots-clés : przyporządkowanie wartości własnych, sprzężenie zwrotne, układ singularny
@article{IJAMCS_2004_14_1_a2,
     author = {Kaczorek, T.},
     title = {Infinite eigenvalue assignment by an output feedback for singular systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {19--23},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a2/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Infinite eigenvalue assignment by an output feedback for singular systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2004
SP  - 19
EP  - 23
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a2/
LA  - en
ID  - IJAMCS_2004_14_1_a2
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Infinite eigenvalue assignment by an output feedback for singular systems
%J International Journal of Applied Mathematics and Computer Science
%D 2004
%P 19-23
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a2/
%G en
%F IJAMCS_2004_14_1_a2
Kaczorek, T. Infinite eigenvalue assignment by an output feedback for singular systems. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 19-23. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a2/

[1] Dai L. (1989): Singular Control Systems. — Berlin: Springer.

[2] Delin Chu and D.W.C Ho (1999): Infinite eigenvalue assignment for singular systems. — Linear Algebra and Its Applications, Vol. 298, No. 1, pp. 21–37.

[3] Kaczorek T. (2002): Polynomial approach to pole shifting to infinity in singular systems by feedbacks.—Bull. Pol. Acad. Sci. Techn. Sci., Vol. 50, No. 2, pp. 134–144.

[4] Kaczorek T. (2000): Reduced-order perfect and standard observers for singular continuous-time linear systems. — Mach. Intell. Robot. Contr., Vol. 2, No. 3, pp. 93–98.

[5] Kaczorek T. (2002): Perfect functional observers of singular continuous-time linear systems. — Mach. Intell. Robot. Contr., Vol. 4, No. 1, pp. 77–82.

[6] Kaczorek T. (1993): Linear Control Systems, Vols. 1 and 2. — New York: Wiley.

[7] Kaczorek T. (2003): The relationship between infinite eigenvalue assignment for singular systems and solvability of polynomial matrix equations.—Int. J. Appl. Math. Comp. Sci., Vol. 13, No. 2, pp. 161–167.

[8] Kaliath T. (1980): Linear Systems. — Englewood Cliffs: Prentice Hall.

[9] Kučera V. (1981): Analysis and Design of Discrete Linear Control Systems.—Prague: Academia.

[10] Wonham W.M. (1979): Linear Multivariable Control: A Geometric Approach.—New York: Springer.