Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_1_a1, author = {Koko, J.}, title = {Newton's iteration with a conjugate gradient based decomposition method for an elliptic {PDE} with a nonlinear boundary condition}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {13--18}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a1/} }
TY - JOUR AU - Koko, J. TI - Newton's iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 13 EP - 18 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a1/ LA - en ID - IJAMCS_2004_14_1_a1 ER -
%0 Journal Article %A Koko, J. %T Newton's iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 13-18 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a1/ %G en %F IJAMCS_2004_14_1_a1
Koko, J. Newton's iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a1/
[1] Dennis J.E. and Schnabel R.B. (1996): Numerical Methods for Unconstrained Optimization and Nonlinear Equations. — Philadelphia: SIAM.
[2] Golub G.H. and Van Loan C.F. (1989): Matrix Computations. — Baltimore: The John Hopkins University Press.
[3] Luenberger D. (1989): Linear and Nonlinear Programming. — Reading, MA: Addison Wesley.
[4] Meurant G. (1999): Computer Solution of Large Systems. — Amsterdam: Elsevier.
[5] Ortega J.M. and Rhainboldt W.C. (1970): Iterative Solution of Nonlinear Equations in Several Variables. — New York: Academic Press.
[6] Polak E. (1971): Computational Methods in Optimization. — New York: Academic Press.
[7] Abbasian R.O. and Carey G.F. (1998): Hybrid MPE-iterative schemes for linear and nonlinear systems. — Appl. Math. Comput., Vol. 26, pp. 277–291.
[8] Golub G.H., MurrayW. and Saunders M.A. (1974): Methods for modifying matrix factorizations.— Math. Comp., Vol. 28, No. 126, pp. 505–535.
[9] Hughes J.T., Ferency R.M. and Halquist J.O. (1987): Largescale vectorized implicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradient. — Comput. Meth. Appl. Mech. Eng., Vol. 61, pp. 215–248.
[10] Saad Y. (1990): SPARSKIT: A basic tool kit for sparse matrix computation.— Tech. Rep. CSRD TR 1029, University of Illinois, Urbana, IL.
[11] Sonnenveld P., Wesseling P. and De Zeeuw P.M. (1985): Multigrid and conjugate gradient methods as convergence acceleration technique, In: Multigrid Meth. Integr. Diff. — pp. 117–167, Clarendon Press.