Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_1_a0, author = {Zhai, G. and Michel, A. N.}, title = {Generalized practical stability analysis of discontinuous dynamical systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {5--12}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a0/} }
TY - JOUR AU - Zhai, G. AU - Michel, A. N. TI - Generalized practical stability analysis of discontinuous dynamical systems JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 5 EP - 12 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a0/ LA - en ID - IJAMCS_2004_14_1_a0 ER -
%0 Journal Article %A Zhai, G. %A Michel, A. N. %T Generalized practical stability analysis of discontinuous dynamical systems %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 5-12 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a0/ %G en %F IJAMCS_2004_14_1_a0
Zhai, G.; Michel, A. N. Generalized practical stability analysis of discontinuous dynamical systems. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a0/
[1] DeCarlo R., Branicky M., Pettersson S. and Lennartson B. (2000): Perspectives and results on the stability and stabilizability of hybrid systems. — Proc. IEEE, Vol. 88, No. 7, pp. 1069–1082.
[2] Hespanha J.P. and Morse A.S. (1999): Stability of switched systems with average dwell-time. — Proc. 38th IEEE Conf. Decision and Control, Phoenix, pp. 2655–2660.
[3] Michel A.N. (1999): Recent trends in the stability analysis of hybrid dynamical systems. — IEEE Trans. Circ. Syst.-I: Fund. Theory Applic., Vol. 45, No. 1, pp. 120–134.
[4] Michel A.N. (1970): Quantitative analysis of simple and interconnected systems: Stability, boundedness and trajectory behavior. — IEEE Trans. Circ. Theory, Vol. 17, No. 3, pp. 292–301.
[5] Michel A.N. and Porter D.W. (1971): Analysis of discontinuous large-scale systems: Stability, transient behaviour and trajectory bounds. — Int. J. Syst. Sci., Vol. 2, No. 1, pp. 77–95.
[6] Michel A.N., Wang K. and Hu B. (2000): Qualitative Theory of Dynamical Systems, 2nd Ed.. — New York: Marcel Dekker.
[7] Lakshmikantham V., Leela S. and Martynyuk A.A. (1991): Practical Stability of Nonlinear Systems. — Singapore: World Scientific.
[8] Weiss L. and Infante E.F. (1967): Finite time stability under perturbing forces and on product spaces. — IEEE Trans. Automat. Contr., Vol. AC–12, No. 1, pp. 54–59.
[9] Zhai G. and Michel A.N. (2002): On practical stability of switched systems. — Proc. 41st IEEE Conf. Decision and Control, Las Vegas, pp. 3488–3493.
[10] Zhai G., Hu B., Yasuda K. and Michel A.N. (2000): Piecewise Lyapunov functions for switched systems with average dwell time.—Asian J. Contr., Vol. 2, No. 3, pp. 192–197.
[11] Zhai G., Hu B., Yasuda K. and Michel A.N. (2001): Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach. — Int. J. Syst. Sci., Vol. 32, No. 8, pp. 1055–1061.
[12] Zhai G., Hu B., Yasuda K. and Michel A.N. (2002): Stability and L2 gain analysis of discrete-time switched systems.— Trans. Inst. Syst. Contr. Inf. Eng., Vol. 15, No. 3, pp. 117–125.