On exact observability of a nonlinear evolutionary equation with a bounded right-hand side operator on a small interval
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 97-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Cauchy problem associated with a nonlinear ordinary differential equation in a Hilbert space $X$, we obtain sufficient conditions for exact observability on a small interval. By means of the condition of boundedness from below by a positive constant on the unit sphere with respect to a linear observer (observation operator) and with the help of Minty–Browder's theorem, the observability problem is reformulated as an operator (integral) equation with the right-hand side involving (in addition to the Volterra-type term, which is “local” in time) a nonlocal term as well. The unique solvability of the obtained operator equation (the equation of state reconstruction from observation) is proved with the help of the contraction map principle and the hypothesis about smallness of the observation interval. Moreover, we prove two theorems on global reconstruction of a state: 1) from observation on a small interval and under the condition of global solvability of some majorant integral equation in the space $\mathbb{R}$; 2) from a series of observations on small intervals in the presence of a priori information on the belonging of the state values to a bounded ball in $X$. As an example (of an independent interest), a semilinear equation of the global electric circuit in the Earth's atmosphere is considered.
Keywords: nonlinear ordinary differential equation in a Hilbert space, non-stationary bounded operator, exact observability, equation of the global electric circuit
@article{IIMI_2024_64_a6,
     author = {A. V. Chernov},
     title = {On exact observability of a nonlinear evolutionary equation with a bounded right-hand side operator on a small interval},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {97--118},
     publisher = {mathdoc},
     volume = {64},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On exact observability of a nonlinear evolutionary equation with a bounded right-hand side operator on a small interval
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 97
EP  - 118
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a6/
LA  - ru
ID  - IIMI_2024_64_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On exact observability of a nonlinear evolutionary equation with a bounded right-hand side operator on a small interval
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 97-118
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a6/
%G ru
%F IIMI_2024_64_a6
A. V. Chernov. On exact observability of a nonlinear evolutionary equation with a bounded right-hand side operator on a small interval. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 97-118. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a6/

[1] Kalman R.E., Falb P.L., Arbib M.A., Topics in mathematical system theory, McGraw-Hill Book Company, 1969 | MR | Zbl

[2] Kostyukovskij Yu.M.-L., “Observability of nonlinear controlled systems”, Avtomatika i Telemekhanika, 1968, no. 9, 29–42 (in Russian) | MR | Zbl

[3] Kostyukovskij Yu.M.-L., “Simple conditions of observability of nonlinear controlled systems”, Automation and Remote Control, 29:10 (1968), 1575–1584 | MR | MR | Zbl

[4] Griffith E.W., Kumar K.S.P., “On the observability of nonlinear systems: I”, Journal of Mathematical Analysis and Applications, 35:1 (1971), 135–147 | DOI | MR | Zbl

[5] Kou S.R., Elliot D.L., Tarn T.J., “Observability of nonlinear systems”, Information and Control, 22:1 (1973), 89–99 | DOI | MR | Zbl

[6] Singh S.N., “Observability in non-linear systems with unmeasurable inputs”, International Journal of Systems Science, 6:8 (1975), 723–732 | DOI | MR | Zbl

[7] Maes K., Chatzis M.N., Lombaert G., “Observability of nonlinear systems with unmeasured inputs”, Mechanical Systems and Signal Processing, 130 (2019), 378–394 | DOI

[8] Massonis G., Banga J.R., Villaverde A.F., “Structural identifiability and observability of compartmental models of the COVID-19 pandemic”, Annual Reviews in Control, 51 (2021), 441–459 | DOI | MR

[9] Martinelli A., “Extension of the observability rank condition to time-varying nonlinear systems”, IEEE Transactions on Automatic Control, 67:9 (2022), 5002–5008 | DOI | MR | Zbl

[10] Dessau H.R., “Dynamic linearization and $\Omega$-observability of nonlinear systems”, Journal of Mathematical Analysis and Applications, 40:2 (1972), 409–417 | DOI | MR | Zbl

[11] Thau F.E., “Observing the state of non-linear dynamic systems”, International Journal of Control, 17:3 (1973), 471–479 | DOI | Zbl

[12] Jacob B., Partington J.R., “Admissibility of control and observation operators for semigroups: a survey”, Current Trends in Operator Theory and its Applications, 149, Birkhäuser, Basel, 2004, 199–221 | DOI | MR | Zbl

[13] Tucsnak M., Weiss G., Observation and control for operator semigroups, Birkhäuser, Basel, 2009 | DOI | MR | Zbl

[14] Vasil’ev F.P., Optimization methods, Factorial Press, Moscow, 2002

[15] Balakrishnan A.V., Applied functional analysis, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | MR | Zbl

[16] Jacob B., Zwart H., “Exact observability of diagonal systems with a one-dimensional output operator”, International Journal of Applied Mathematics and Computer Science, 11:6 (2001), 1277–1283 https://eudml.org/doc/207555 | MR | Zbl

[17] Jacob B., Zwart H., “Exact observability of diagonal systems with a finite-dimensional output operator”, Systems Control Letters, 43:2 (2001), 101–109 | DOI | MR | Zbl

[18] Shklyar B., “Observability of evolution equations”, Functional Differential Equations, 10:3–4 (2003), 563–578 | MR | Zbl

[19] Suzuki T., Yamamoto M., “Observability, controllability, and feedback stabilizability for evolution equations, I”, Japan Journal of Applied Mathematics, 2:1 (1985), 211–228 | DOI | MR | Zbl

[20] Ungureanu V.M., “Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability”, Czechoslovak Mathematical Journal, 59:2 (2009), 317–342 | DOI | MR | Zbl

[21] Shklyar B., “On null set and observability of abstract evolution equation”, Nonlinear Analysis: Theory, Methods Applications, 47:2 (2001), 969–978 | DOI | MR | Zbl

[22] Shklyar B., “Approximate observability of abstract evolution equation with unbounded observation operator”, Mathematical and Computer Modelling, 36:6 (2002), 729–736 | DOI | MR | Zbl

[23] Letrouit C., Sun C., “Observability of Baouendi–Grushin-type equations through resolvent estimates”, Journal of the Institute of Mathematics of Jussieu, 22:2 (2023), 541–579 | DOI | MR | Zbl

[24] Chen J.-H., “Infinite-time exact observability of Volterra systems in Hilbert spaces”, Systems Control Letters, 126 (2019), 28–32 | DOI | MR | Zbl

[25] Chen J.-H., Yi N., “Infinite-time admissibility and exact observability of Volterra systems”, SIAM Journal on Control and Optimization, 59:2 (2021), 1275–1292 | DOI | MR | Zbl

[26] Egorov A.I., Foundations of control theory, Fizmatlit, Moscow, 2004 | MR | Zbl

[27] Pugachev V.S., Lectures on functional analysis, Moscow Aviation Institute, Moscow, 1996

[28] Chernov A.V., “On the exact global controllability of a semilinear evolution equation”, Differential Equations, 60:3 (2024), 374–392 | DOI | DOI | MR | Zbl

[29] Kachurovskii R.I., “Non-linear monotone operators in Banach spaces”, Russian Mathematical Surveys, 23:2 (1968), 117–165 | DOI | MR | Zbl

[30] Kantorovich L.V., Akilov G.P., Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl

[31] Zhidkov A.A., Kalinin A.V., “Several problems in mathematical and numerical modeling of global electric circuit in the atmosphere”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2009, no. 6(1), 150–158 (in Russian) http://www.vestnik.unn.ru/ru/nomera?anum=2784

[32] Kalinin A.V., Slyunyaev N.N., “Initial-boundary value problems for the equations of the global atmospheric electric circuit”, Journal of Mathematical Analysis and Applications, 450:1 (2017), 112–136 | DOI | MR | Zbl

[33] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | Zbl

[34] Yosida K., Functional analysis, Springer, Berlin–Heidelberg, 1995 | DOI | MR | MR

[35] Vulikh B.Z., Short course in the theory of functions of a real variable, Nauka, Moscow, 1973 | Zbl