Convergence of conflict-controlled systems over a finite period of time
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 70-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear conflict-controlled system is considered over a finite period of time and in a finite-dimensional Euclidean space. The problem of convergence with a compact target set at a fixed point in time is studied. Within the framework of the convergence problem, one of the key issues is investigated — the approximate construction of sets of solvability of the problem. An approach to approximate construction is discussed, the basis of which is a model that complements N.N. Krasovsky's unification method in the theory of differential games.
Keywords: control, conflict-controlled system, target set, differential inclusion, saddle point in a small game, convergence problem, solvability set of the convergence problem, maximum minimax $u$-stable bridge, maximum minimax $u$-stable path
@article{IIMI_2024_64_a5,
     author = {V. N. Ushakov and A. V. Ushakov and O. A. Kuvshinov},
     title = {Convergence of conflict-controlled systems over a finite period of time},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {70--96},
     publisher = {mathdoc},
     volume = {64},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a5/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. V. Ushakov
AU  - O. A. Kuvshinov
TI  - Convergence of conflict-controlled systems over a finite period of time
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 70
EP  - 96
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a5/
LA  - ru
ID  - IIMI_2024_64_a5
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. V. Ushakov
%A O. A. Kuvshinov
%T Convergence of conflict-controlled systems over a finite period of time
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 70-96
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a5/
%G ru
%F IIMI_2024_64_a5
V. N. Ushakov; A. V. Ushakov; O. A. Kuvshinov. Convergence of conflict-controlled systems over a finite period of time. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 70-96. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a5/

[1] Krasovskii N.N., Game problems on the encounter of motions, Nauka, Moscow, 1970 | Zbl

[2] Krasovskii N.N., Subbotin A.I., Positional-differential games, Nauka, Moscow, 1974 | MR | Zbl

[3] Subbotin A.I., Chentsov A.G., Guarantee optimization in control problems, Nauka, Moscow, 1981 | MR | Zbl

[4] Krasovskii N.N., Subbotin A.I., Ushakov V.N., “A minimax differential game”, Soviet Mathematics. Doklady, 13 (1972), 1200–1204 | MR | Zbl

[5] Krasovskii N.N., “On the problem of unifying differential games”, Soviet Mathematics. Doklady, 17 (1976), 269–273 | MR | Zbl

[6] Krasovskii N.N., “Unification of differential games”, Trudy Instituta Matematiki i Mekhaniki, issue 24: Game control tasks, Ural Scientific Center of the USSR Academy of Sciences, Sverdlovsk, 1977, 32–45 (in Russian)

[7] Taras’yev A.M., Ushakov V.N., Khripunov A.P., “On a computational algorithm for solving game control problems”, Journal of Applied Mathematics and Mechanics, 51:2 (1987), 167–172 | DOI | MR

[8] Taras’ev A.M., Constructions and methods of nonsmooth analysis in optimal guaranteed control problems, Abstract of Dr. Sci. (Phys.–Math.) Dissertation, Yekaterinburg, 1996, 32 pp.

[9] Grigor’eva S.V., Pakhotinskikh V.Yu., Uspenskii A.A., Ushakov V.N., “Construction of solutions in certain differential games with phase constraints”, Sbornik: Mathematics, 196:4 (2005), 513–539 | DOI | DOI | MR

[10] Subbotin A.I., Minimax inequalities and Hamilton–Jacobi equations, Nauka, Moscow, 1991 | Zbl

[11] Fleming W.H., “The convergence problem for differential games”, Journal of Mathematical Analysis and Applications, 3:1 (1961), 102–116 | DOI | MR

[12] Pontryagin L.S., “Linear differential games. I”, Soviet Mathematics. Doklady, 8 (1967), 769–771 | MR | Zbl

[13] Pontryagin L.S., “Linear differential games. II”, Soviet Mathematics. Doklady, 8 (1967), 910–912 | MR | Zbl

[14] Nikol’skii M.S., “On the alternating integral of Pontryagin”, Mathematics of the USSR-Sbornik, 44:1 (1983), 125–132 | DOI | MR | MR

[15] Nikol’skii M.S., “On the lower alternating integral of Pontryagin in linear differential games of pursuit”, Mathematics of the USSR-Sbornik, 56:1 (1987), 33–47 | DOI | MR | MR

[16] Polovinkin E.S., Ivanov G.E., Balashov M.V., Konstantinov R.V., Khorev A.V., “An algorithm for the numerical solution of linear differential games”, Sbornik: Mathematics, 192:10 (2001), 1515–1542 | DOI | DOI | MR

[17] Azamov A., “Semistability and duality in the theory of the Pontryagin alternating integral”, Soviet Mathematics. Doklady, 37:2 (1988), 355–359 | MR | Zbl

[18] Pshenichnyj B.N., “The structure of differential games”, Soviet Mathematics. Doklady, 10 (1969), 70–72 | Zbl

[19] Chernous’ko F.L., Melikyan A.A., Game-theoretical control and search problems, Nauka, Moscow, 1978 | MR | Zbl

[20] Grinikh A.L., Petrosyan L.A., “An effective punishment for an $n$-person prisoner’s dilemma on a network”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27:3 (2021), 256–262 | DOI | MR

[21] Patsko V.S., “The quality problem in second-order linear differential games”, Differentsial’nye igry i zadachi upravleniya, Ural Scientific Center of the USSR Academy of Sciences, Sverdlovsk, 1975, 167–227 (in Russian)

[22] Gomoyunov M.I., Lukoyanov N.Yu., “On the numerial solution of differential games for neutral-type linear systems”, Proceedings of the Steklov Institute of Mathematics, 301:suppl. 1 (2018), 44–56 | DOI | DOI | MR

[23] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Pursuit differential games with state constraints”, SIAM Journal on Control and Optimization, 39:5 (2000), 1615–1632 | DOI | MR