Nagumo-type viability theorem for nonlocal balance equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main object of the paper is a nonlocal balance equation that describes an evolution of a system of infinitely many identical particles those move according to a vector field and can also disappear or give a spring. For such system we examine the viability property that means that the systems starting inside a given set of measures does not leave this set. We prove an analog of the Nagumo-type viability theorem that gives the equivalent form of the viability property in the terms of the tangent cone.
Keywords: viability theorem, space of nonnegative measures
Mots-clés : balance equation, tangent cone
@article{IIMI_2024_64_a0,
     author = {Y. V. Averboukh},
     title = {Nagumo-type viability theorem for nonlocal balance equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {64},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/}
}
TY  - JOUR
AU  - Y. V. Averboukh
TI  - Nagumo-type viability theorem for nonlocal balance equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 3
EP  - 16
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/
LA  - en
ID  - IIMI_2024_64_a0
ER  - 
%0 Journal Article
%A Y. V. Averboukh
%T Nagumo-type viability theorem for nonlocal balance equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 3-16
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/
%G en
%F IIMI_2024_64_a0
Y. V. Averboukh. Nagumo-type viability theorem for nonlocal balance equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 3-16. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/

[1] As Soulaimani S., “Viability with probabilistic knowledge of initial condition, application to optimal control”, Set-Valued Analysis, 16:7–8 (2008), 1037–1060 | DOI | MR | Zbl

[2] Aubin J.-P., Viability theory, Birkhäuser, Boston, 2009 | MR | Zbl

[3] Averboukh Y., “Viability theorem for deterministic mean field type control systems”, Set-Valued and Variational Analysis, 26:4 (2018), 993–1008 | DOI | MR | Zbl

[4] Averboukh Y., “Nonlocal balance equation: representation and approximation of solution”, Journal of Dynamics and Differential Equations, 2024 | DOI | Zbl

[5] Averboukh Y., Marigonda A., Quincampoix M., “Extremal shift rule and viability property for mean field-type control systems”, Journal of Optimization Theory and Applications, 189:1 (2021), 244–270 | DOI | MR | Zbl

[6] Badreddine Z., Frankowska H., “Viability and invariance of systems on metric spaces”, Nonlinear Analysis, 225 (2022), 113133 | DOI | MR | Zbl

[7] Bonnet B., Frankowska H., “Viability and exponentially stable trajectories for differential inclusions in Wasserstein spaces”, 2022 IEEE 61st Conference on Decision and Control (CDC), IEEE, 2022, 5086–5091 | DOI | MR

[8] Buckdahn R., Peng S., Quincampoix M., Rainer C., “Existence of stochastic control under state constraints”, Comptes Rendus de l’Académie des Sciences — Series I — Mathematics, 327:1 (1998), 17–22 | DOI | MR | Zbl

[9] Cârjă O., Necula M., Vrabie I.I., Viability, invariance and applications, Elsevier, 2007 | MR | Zbl

[10] Clarke F.H., Ledyaev Yu.S., Radulescu M.L., “Approximate invariance and differential inclusions in Hilbert spaces”, Journal of Dynamical and Control Systems, 3:4 (1997), 493–518 | DOI | MR | Zbl

[11] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Springer, New York, 1998 | DOI | MR | Zbl

[12] Crippa G., Lécureux-Mercier M., “Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow”, Nonlinear Differential Equations and Applications NoDEA, 20:3 (2013), 523–537 | DOI | MR | Zbl

[13] Da Prato G., Frankowska H., “Invariance of stochastic control systems with deterministic arguments”, Journal of Differential Equations, 200:1 (2004), 18–52 | DOI | MR | Zbl

[14] Frankowska H., Da Prato G., “Invariance of closed sets under stochastic control systems”, Control and boundary analysis, CRC Press, 2005, 218–229 | DOI | MR

[15] Da Prato G., Frankowska H., “Stochastic viability of convex sets”, Journal of Mathematical Analysis and Applications, 333:1 (2007), 151–163 | DOI | MR | Zbl

[16] Duteil N.P., “Mean-field limit of collective dynamics with time-varying weights”, Networks and Heterogeneous Media, 17:2 (2022), 129–161 | DOI | MR | Zbl

[17] Keimer A., Pflug L., “Chapter 6 — nonlocal balance laws — an overview over recent results”, Handbook of Numerical Analysis, 24 (2023), 183–216 | DOI

[18] Kolokoltsov V., Differential equations on measures and functional spaces, Birkhäuser, Cham, 2019 | DOI | MR | Zbl

[19] Nagumo M., “Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen”, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 24 (1942), 551–559 | DOI | MR | Zbl

[20] Piccoli B., Duteil N.P., “Control of collective dynamics with time-varying weights”, Recent Advances in Kinetic Equations and Applications, Springer, Cham, 2021, 289–308 | DOI | MR | Zbl

[21] Piccoli B., Rossi F., “Generalized Wasserstein distance and its application to transport equations with source”, Archive for Rational Mechanics and Analysis, 211:1 (2014), 335–358 | DOI | MR | Zbl

[22] Piccoli B., Rossi F., “On properties of the generalized Wasserstein distance”, Archive for Rational Mechanics and Analysis, 222:3 (2016), 1339–1365 | DOI | MR | Zbl

[23] Piccoli B., Rossi F., “Measure-theoretic models for crowd dynamics”, Crowd dynamics, Volume 1, Birkhäuser, Cham, 2018, 137–165 | DOI | MR | Zbl

[24] Piccoli B., Rossi F., Tournus M., “A Wasserstein norm for signed measures, with application to non-local transport equation with source term”, Communications in Mathematical Sciences, 21:5 (2023), 1279–1301 | DOI | MR | Zbl

[25] Pogodaev N.I., Staritsyn M.V., “Nonlocal balance equations with parameters in the space of signed measures”, Sbornik: Mathematics, 213:1 (2022), 63–87 | DOI | DOI | MR | Zbl

[26] Villani C., Optimal transport, Springer, Berlin–Heidelberg, 2009 | DOI | Zbl