Nagumo-type viability theorem for nonlocal balance equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The main object of the paper is a nonlocal balance equation that describes an evolution of a system of infinitely many identical particles those move according to a vector field and can also disappear or give a spring. For such system we examine the viability property that means that the systems starting inside a given set of measures does not leave this set. We prove an analog of the Nagumo-type viability theorem that gives the equivalent form of the viability property in the terms of the tangent cone.
Keywords: viability theorem, space of nonnegative measures
Mots-clés : balance equation, tangent cone
@article{IIMI_2024_64_a0,
     author = {Y. V. Averboukh},
     title = {Nagumo-type viability theorem for nonlocal balance equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {64},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/}
}
TY  - JOUR
AU  - Y. V. Averboukh
TI  - Nagumo-type viability theorem for nonlocal balance equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 3
EP  - 16
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/
LA  - en
ID  - IIMI_2024_64_a0
ER  - 
%0 Journal Article
%A Y. V. Averboukh
%T Nagumo-type viability theorem for nonlocal balance equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 3-16
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/
%G en
%F IIMI_2024_64_a0
Y. V. Averboukh. Nagumo-type viability theorem for nonlocal balance equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 3-16. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a0/