Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2024_63_a7, author = {A. V. Chernov}, title = {On application of {Gaussian} kernels and {Laplace} functions combined with {Kolmogorov's} theorem for approximation of functions of several variables}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {114--131}, publisher = {mathdoc}, volume = {63}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2024_63_a7/} }
TY - JOUR AU - A. V. Chernov TI - On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2024 SP - 114 EP - 131 VL - 63 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2024_63_a7/ LA - ru ID - IIMI_2024_63_a7 ER -
%0 Journal Article %A A. V. Chernov %T On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2024 %P 114-131 %V 63 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2024_63_a7/ %G ru %F IIMI_2024_63_a7
A. V. Chernov. On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 114-131. http://geodesic.mathdoc.fr/item/IIMI_2024_63_a7/
[1] Chernov A.V., “Gaussian functions combined with Kolmogorov’s theorem as applied to approximation of functions of several variables”, Computational Mathematics and Mathematical Physics, 60:5 (2020), 766–782 | DOI | DOI | MR | Zbl
[2] Kolmogorov A.N., “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition”, Doklady Akademii Nauk SSSR, 114:5 (1957), 953–956 (in Russian) | Zbl
[3] Sprecher D.A., “On the structure of continuous functions of several variables”, Transactions of the American Mathematical Society, 115 (1965), 340–355 | DOI | MR | Zbl
[4] Golubkov A.Yu., “The tracing of external and internal representation functions of continuous functions of several variables by superposition of continuous functions of one variable”, Fundamental’naya i Prikladnaya Matematika, 8:1 (2002), 27–38 (in Russian) | MR | Zbl
[5] Butyrsky Eu.Yu., Kuvaldin I.A., Chalkin V.P., “Multidimensional functions’ approximation”, Nauchnoe Priborostroenie, 20:2 (2010), 82–92 (in Russian) | DOI
[6] Chernov A.V., “On the application of Gaussian functions for discretization of optimal control problems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:4 (2017), 558–575 (in Russian) | DOI | MR | Zbl
[7] Chernov A.V., “On uniform monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral”, Computational Mathematics and Mathematical Physics, 62:4 (2022), 564–580 | DOI | MR | Zbl
[8] Chernov A.V., “On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 61 (2023), 187–205 (in Russian) | DOI | Zbl
[9] Maz’ya V., Schmidt G., Approximate approximations, American Mathematical Society, Providence, RI, 2007 | DOI | MR | Zbl
[10] Riemenschneider S.D., Sivakumar N., “Cardinal interpolation by Gaussian functions: A survey”, The Journal of Analysis, 8 (2000), 157–178 | MR | Zbl
[11] Luh Lin-Tian, “The shape parameter in the Gaussian function”, Computers and Mathematics with Applications, 63:3 (2012), 687–694 | DOI | MR | Zbl
[12] Hangelbroek T., Madych W., Narcowich F., Ward J.D., “Cardinal interpolation with Gaussian kernels”, Journal of Fourier Analysis and Applications, 18:1 (2012), 67–86 | DOI | MR | Zbl
[13] Hamm K., “Approximation rates for interpolation of Sobolev functions via Gaussians and allied functions”, Journal of Approximation Theory, 189 (2015), 101–122 | DOI | MR | Zbl
[14] Griebel M., Schneider M., Zenger C., “A combination technique for the solution of sparse grid problems”, Iterative methods in linear algebra, Proceedings of the IMACS international symposium (Brussels, Belgium, 2–4 April, 1991), North-Holland, Amsterdam, 1992, 263–281 | MR | Zbl
[15] Georgoulis E.H., Levesley J., Subhan F., “Multilevel sparse kernel-based interpolation”, SIAM Journal on Scientific Computing, 35:2 (2013), A815–A831 | DOI | MR | Zbl
[16] Vulikh B.Z., A brief course of the theory of real variable functions (introduction to the theory of integral), Nauka, Moscow, 1973
[17] Moré J.J., Thuente D.J., “Line search algorithms with guaranteed sufficient decrease”, ACM Transactions on Mathematical Software, 20:3 (1994), 286–307 | DOI | MR | Zbl