Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2024_63_a5, author = {G. U. Urazboev and M. M. Khasanov and O. B. Ismoilov}, title = {Integration of negative-order modified {Korteweg{\textendash}de} {Vries} equation with an integral source}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {80--90}, publisher = {mathdoc}, volume = {63}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/} }
TY - JOUR AU - G. U. Urazboev AU - M. M. Khasanov AU - O. B. Ismoilov TI - Integration of negative-order modified Korteweg–de Vries equation with an integral source JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2024 SP - 80 EP - 90 VL - 63 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/ LA - ru ID - IIMI_2024_63_a5 ER -
%0 Journal Article %A G. U. Urazboev %A M. M. Khasanov %A O. B. Ismoilov %T Integration of negative-order modified Korteweg–de Vries equation with an integral source %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2024 %P 80-90 %V 63 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/ %G ru %F IIMI_2024_63_a5
G. U. Urazboev; M. M. Khasanov; O. B. Ismoilov. Integration of negative-order modified Korteweg–de Vries equation with an integral source. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 80-90. http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/
[1] Wadati M., “The exact solution of the modified Korteweg–de Vries equation”, Journal of the Physical Society of Japan, 32:6 (1972), 1681 | DOI | MR
[2] Its A.R., Exact integration in Riemannian $\theta$-functions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation, Cand. Sci. (Phys.–Math.) Dissertation, Leningrad, 1977
[3] Smirnov A.O., “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation”, Russian Academy of Sciences. Sbornik. Mathematics, 82:2 (1995), 461–470 | DOI | MR | Zbl
[4] Mel’nikov V.K., “Exact solutions of the Korteweg–de Vries equation with a self-consistent source”, Physics Letters A, 128:9 (1988), 488–492 | DOI | MR
[5] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, Journal of Physics A: Mathematical and General, 23:8 (1990), 1385–1403 | DOI | MR | Zbl
[6] Yakhshimuratov A.B., Khasanov M.M., “Integration of the modified Korteweg–de Vries equation with a self-consistent source in the class of periodic functions”, Differential Equations, 50:4 (2014), 533–540 | DOI | DOI | MR | Zbl
[7] Wazwaz A.-M., “Negative-order KdV and negative-order KP equations: multiple soliton solutions”, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87:2 (2017), 291–296 | DOI | MR | Zbl
[8] Wazwaz A.-M., Xu Gui-Qiong, “Negative-order mKdV equations: multiple soliton and multiple singular soliton solutions”, Mathematical Methods in the Applied Sciences, 39:4 (2014), 661–667 | DOI | MR
[9] Gomes J.F., França G.S., de Melo G.R., Zimerman A.H., “Negative even grade mKdV hierarchy and its soliton solutions”, Journal of Physics A: Mathematical and Theoretical, 42:44 (2009), 445204 | DOI | MR | Zbl
[10] Kundu A., Sahadevan R., Nalinidevi L., “Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability”, Journal of Physics A: Mathematical and Theoretical, 42:11 (2009), 115213 | DOI | MR | Zbl
[11] Gomes J.F., de Melo G.R., Zimerman A.H., “A class of mixed integrable models”, Journal of Physics A: Mathematical and Theoretical, 42:27 (2009), 275208 | DOI | MR | Zbl
[12] Urazboev G.U., Baltaeva I.I., Ismoilov O.B., “Integration of the negative order Korteweg–de Vries equation by the inverse scattering method”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:3 (2023), 523–533 (in Russian) | DOI | MR
[13] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:2 (2022), 228–239 (in Russian) | DOI | MR | Zbl
[14] Urazboev G.U., Khasanov M.M., Baltaeva I.I., “Integration of the negative order Korteweg–de Vries equation with a special source”, Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 31–43 (in Russian) | DOI | MR | Zbl
[15] Khasanov M.M., Rakhimov I.D., “Integration of the KdV equation of negative order with a free term in the class of periodic functions”, Chebyshevskii Sbornik,, 24:2(88) (2023), 266–275 (in Russian) | MR
[16] Urazboev G.U., Yakhshimuratov A.B., Khasanov M.M., “Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions”, Theoretical and Mathematical Physics, 217:2 (2023), 1689–1699 | DOI | DOI | MR
[17] Misyura T.V., “Characterization of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator. I”, Teoriya Funktsii, Funktsional’nyi Analiz i ikh Prilozheniya, 30:2 (1978), 90–101 (in Russian) | MR | Zbl
[18] Djakov P.B., Mityagin B.S., “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Mathematical Surveys, 61:4 (2006), 663–766 | DOI | DOI | MR | Zbl
[19] Currie S., Roth T.T., Watson B.A., “Borg’s periodicity theorems for first-order self-adjoint systems with complex potentials”, Proceedings of the Edinburgh Mathematical Society, 60:3 (2017), 615–633 | DOI | MR | Zbl
[20] Levitan B.M., Sargsjan I.S., Sturm–Liouville and Dirac operators, Springer, Dordrecht, 1991 | DOI | MR | MR | Zbl