Integration of negative-order modified Korteweg–de Vries equation with an integral source
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 80-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is shown that the modified Korteweg–de Vries (mKdV) equation of negative order with an integral source can be integrated by the method of the inverse spectral problem. The main result of this work is the derivation of the evolution of the spectral data of the Dirac system with a periodic potential associated with the solution of the negative-order modified Korteweg–de Vries equation with an integral source. The obtained results allow us to apply the inverse problem method to solve the negative-order modified Korteweg–de Vries equation with an integral source.
Keywords: modified Korteweg–de Vries equation of negative order, Dirac system, inverse spectral problem, Dubrovin–Trubowitz system of equations, trace formulas
@article{IIMI_2024_63_a5,
     author = {G. U. Urazboev and M. M. Khasanov and O. B. Ismoilov},
     title = {Integration of negative-order modified {Korteweg{\textendash}de} {Vries} equation with an integral source},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {80--90},
     publisher = {mathdoc},
     volume = {63},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/}
}
TY  - JOUR
AU  - G. U. Urazboev
AU  - M. M. Khasanov
AU  - O. B. Ismoilov
TI  - Integration of negative-order modified Korteweg–de Vries equation with an integral source
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 80
EP  - 90
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/
LA  - ru
ID  - IIMI_2024_63_a5
ER  - 
%0 Journal Article
%A G. U. Urazboev
%A M. M. Khasanov
%A O. B. Ismoilov
%T Integration of negative-order modified Korteweg–de Vries equation with an integral source
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 80-90
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/
%G ru
%F IIMI_2024_63_a5
G. U. Urazboev; M. M. Khasanov; O. B. Ismoilov. Integration of negative-order modified Korteweg–de Vries equation with an integral source. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 80-90. http://geodesic.mathdoc.fr/item/IIMI_2024_63_a5/

[1] Wadati M., “The exact solution of the modified Korteweg–de Vries equation”, Journal of the Physical Society of Japan, 32:6 (1972), 1681 | DOI | MR

[2] Its A.R., Exact integration in Riemannian $\theta$-functions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation, Cand. Sci. (Phys.–Math.) Dissertation, Leningrad, 1977

[3] Smirnov A.O., “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation”, Russian Academy of Sciences. Sbornik. Mathematics, 82:2 (1995), 461–470 | DOI | MR | Zbl

[4] Mel’nikov V.K., “Exact solutions of the Korteweg–de Vries equation with a self-consistent source”, Physics Letters A, 128:9 (1988), 488–492 | DOI | MR

[5] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, Journal of Physics A: Mathematical and General, 23:8 (1990), 1385–1403 | DOI | MR | Zbl

[6] Yakhshimuratov A.B., Khasanov M.M., “Integration of the modified Korteweg–de Vries equation with a self-consistent source in the class of periodic functions”, Differential Equations, 50:4 (2014), 533–540 | DOI | DOI | MR | Zbl

[7] Wazwaz A.-M., “Negative-order KdV and negative-order KP equations: multiple soliton solutions”, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87:2 (2017), 291–296 | DOI | MR | Zbl

[8] Wazwaz A.-M., Xu Gui-Qiong, “Negative-order mKdV equations: multiple soliton and multiple singular soliton solutions”, Mathematical Methods in the Applied Sciences, 39:4 (2014), 661–667 | DOI | MR

[9] Gomes J.F., França G.S., de Melo G.R., Zimerman A.H., “Negative even grade mKdV hierarchy and its soliton solutions”, Journal of Physics A: Mathematical and Theoretical, 42:44 (2009), 445204 | DOI | MR | Zbl

[10] Kundu A., Sahadevan R., Nalinidevi L., “Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability”, Journal of Physics A: Mathematical and Theoretical, 42:11 (2009), 115213 | DOI | MR | Zbl

[11] Gomes J.F., de Melo G.R., Zimerman A.H., “A class of mixed integrable models”, Journal of Physics A: Mathematical and Theoretical, 42:27 (2009), 275208 | DOI | MR | Zbl

[12] Urazboev G.U., Baltaeva I.I., Ismoilov O.B., “Integration of the negative order Korteweg–de Vries equation by the inverse scattering method”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:3 (2023), 523–533 (in Russian) | DOI | MR

[13] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:2 (2022), 228–239 (in Russian) | DOI | MR | Zbl

[14] Urazboev G.U., Khasanov M.M., Baltaeva I.I., “Integration of the negative order Korteweg–de Vries equation with a special source”, Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 31–43 (in Russian) | DOI | MR | Zbl

[15] Khasanov M.M., Rakhimov I.D., “Integration of the KdV equation of negative order with a free term in the class of periodic functions”, Chebyshevskii Sbornik,, 24:2(88) (2023), 266–275 (in Russian) | MR

[16] Urazboev G.U., Yakhshimuratov A.B., Khasanov M.M., “Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions”, Theoretical and Mathematical Physics, 217:2 (2023), 1689–1699 | DOI | DOI | MR

[17] Misyura T.V., “Characterization of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator. I”, Teoriya Funktsii, Funktsional’nyi Analiz i ikh Prilozheniya, 30:2 (1978), 90–101 (in Russian) | MR | Zbl

[18] Djakov P.B., Mityagin B.S., “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Mathematical Surveys, 61:4 (2006), 663–766 | DOI | DOI | MR | Zbl

[19] Currie S., Roth T.T., Watson B.A., “Borg’s periodicity theorems for first-order self-adjoint systems with complex potentials”, Proceedings of the Edinburgh Mathematical Society, 60:3 (2017), 615–633 | DOI | MR | Zbl

[20] Levitan B.M., Sargsjan I.S., Sturm–Liouville and Dirac operators, Springer, Dordrecht, 1991 | DOI | MR | MR | Zbl