Double capture of coordinated evaders in recurrent differential games
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In finite-dimensional Euclidean space, a problem of pursuit of two evaders by a group of pursuers, which is described by a linear nonstationary system of differential equations, is considered under the assumption that the fundamental matrix of the homogeneous system is a recurrent function. It is assumed that the evaders use the same control. The pursuers use counterstrategies based on information about the initial positions and the prehistory of the control of the evaders. The set of admissible controls is a strictly convex compact with a smooth boundary, and the goal sets are the origin of coordinates. The goal of the group of pursuers is to catch at least one evader by two pursuers. In terms of initial positions and parameters of the game, a sufficient condition for capture is obtained. This study is based on the method of resolving functions, which makes it possible to obtain sufficient conditions for solvability of the problem of pursuit in some guaranteed time.
Keywords: differential game, group pursuit, pursuer, evader, recurrent function
@article{IIMI_2024_63_a3,
     author = {N. N. Petrov},
     title = {Double capture of coordinated evaders in recurrent differential games},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {63},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_63_a3/}
}
TY  - JOUR
AU  - N. N. Petrov
TI  - Double capture of coordinated evaders in recurrent differential games
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 49
EP  - 60
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_63_a3/
LA  - ru
ID  - IIMI_2024_63_a3
ER  - 
%0 Journal Article
%A N. N. Petrov
%T Double capture of coordinated evaders in recurrent differential games
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 49-60
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_63_a3/
%G ru
%F IIMI_2024_63_a3
N. N. Petrov. Double capture of coordinated evaders in recurrent differential games. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 49-60. http://geodesic.mathdoc.fr/item/IIMI_2024_63_a3/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | Zbl

[2] Pontryagin L.S., Selected scientific works, v. 2, Nauka, Moscow, 1988

[3] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 | MR | Zbl | Zbl

[4] Friedman A., Differential games, John Wiley and Sons, New York, 1971 | MR | Zbl

[5] Hajek O., Pursuit games. An introduction to the theory and applications of differential games of pursuit and evasion, Academic Press, New York, 1975 | MR | Zbl

[6] Narmanov A.Ya., Shchelchkov K.A., “The evasion problem in a nonlinear differential game with discrete control”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 75–85 (in Russian) | DOI | MR | Zbl

[7] Averboukh Yu., “Stackelberg solution of first-order mean field game with a major player”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 3–12 | DOI | MR | Zbl

[8] Casini M., Criscuoli M., Garulli A., “A discrete-time pursuit–evasion game in convex polygonal environments”, Systems and Control Letters, 125 (2019), 22–28 | DOI | MR | Zbl

[9] Chen Mo, Zhou Zhengyuan, Tomlin C.J., “Multiplayer reach-avoid games via pairwise outcomes”, IEEE Transactions on Automatic Control, 62:3 (2017), 1451–1457 | DOI | MR | Zbl

[10] Garcia E., Casbeer D.W., von Moll A., Pachter M., “Multiple pursuer multiple evader differential games”, IEEE Transactions on Automatic Control, 66:5 (2021), 2345–2350 | DOI | MR

[11] Sun Wei, Tsiotras P., Yezzi A.J., “Multiplayer pursuit–evasion games in three-dimensional flow fields”, Dynamic Games and Applications, 9:4 (2019), 1188–1207 | DOI | MR | Zbl

[12] Zhou Zhengyuan, Ding Jerry, Huang Haomiao, Takei Ryo, Tomlin C., “Efficient path planning algorithms in reach-avoid problems”, Automatica, 89 (2018), 28–36 | DOI | MR | Zbl

[13] Chikrii A.A., Conflict-controlled processes, Kluwer Academic Publishers, Dordrecht, 1997 | DOI | MR | Zbl

[14] Grigorenko N.L., Mathematical methods of control a few dynamic processes, Moscow State University, Moscow, 1990

[15] Blagodatskikh A.I., Petrov N.N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[16] Kumkov S.S., Ménec S.L., Patsko V.S., “Zero-sum pursuit–evasion differential games with many objects: survey of publications”, Dynamic Games and Applications, 7:4 (2017), 609–633 | DOI | MR | Zbl

[17] Satimov N., Mamatov M.S., “On problems of pursuit and evasion away from meeting in differential games between the group of pursuers and evaders”, Doklady Akademii Nauk Uzbekskoi SSR, 1983, 3–6 (in Russian) | MR | Zbl

[18] Vagin D.A., Petrov N.N., “A problem of group pursuit with phase constraints”, Journal of Applied Mathematics and Mechanics, 66:2 (2002), 225–232 | DOI | MR | Zbl

[19] Petrov N.N., Solov’eva N.A., “Problem of pursuit of a group of coordinated evaders in linear recurrent differential games”, Journal of Computer and Systems Sciences International, 51:6 (2012), 770–778 | DOI | MR | Zbl

[20] Vinogradova M.N., Petrov N.N., Solov’eva N.A., “Capture of two cooperative evaders in linear recurrent differential games”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 19:1 (2013), 41–48 (in Russian) | MR

[21] Petrov N.N., Solov’eva N.A., “Multiple capture of given number of evaders in linear recurrent differential games”, Journal of Optimization Theory and Applications, 182:1 (2019), 417–429 | DOI | MR | Zbl

[22] Petrov N.N., Solov’eva N.A., “Problem of multiple capture of given number of evaders in recurrent differential games”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 19:1 (2022), 371–377 | DOI | MR | Zbl

[23] Petrov N.N., “On the problem of pursuing two coordinated evaders in linear recurrent differential games”, Journal of Optimization Theory and Applications, 197:3 (2023), 1011–1023 | DOI | MR | Zbl

[24] Blagodatskikh A.I., Petrov N.N., “Simultaneous multiple capture of rigidly coordinated evaders”, Dynamic Games and Applications, 9:3 (2019), 594–613 | DOI | MR | Zbl

[25] Blagodatskikh A.I., “Multiple capture of rigidly coordinated evaders”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 26:1 (2016), 46–57 (in Russian) | DOI | MR | Zbl

[26] Zubov V.I., “On the theory of recurrent functions”, Sibirskii Matematicheskii Zhurnal, 3:4 (1962), 532–560 (in Russian) | DOI | MR

[27] Petrov N.N., “Controllability of autonomous systems”, Differentsial’nye Uravneniya, 4:4 (1968), 606–617 (in Russian) | Zbl

[28] Petrov N.N., “Two-time capture of coordinated evaders in a simple pursuit problem”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:2 (2023), 281–292 (in Russian) | DOI | MR | Zbl

[29] Vagin D.A., Petrov N.N., “A problem of the pursuit of a group rigidly connected evaders”, Journal of Computer and Systems Sciences International, 40:5 (2001), 749–753 | MR | Zbl | Zbl