Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2024_63_a0, author = {A. A. Bazulkina and L. I. Rodina}, title = {Comparison theorem for systems of differential equations and its application to estimate the average time benefit from resource collection}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--17}, publisher = {mathdoc}, volume = {63}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2024_63_a0/} }
TY - JOUR AU - A. A. Bazulkina AU - L. I. Rodina TI - Comparison theorem for systems of differential equations and its application to estimate the average time benefit from resource collection JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2024 SP - 3 EP - 17 VL - 63 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2024_63_a0/ LA - ru ID - IIMI_2024_63_a0 ER -
%0 Journal Article %A A. A. Bazulkina %A L. I. Rodina %T Comparison theorem for systems of differential equations and its application to estimate the average time benefit from resource collection %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2024 %P 3-17 %V 63 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2024_63_a0/ %G ru %F IIMI_2024_63_a0
A. A. Bazulkina; L. I. Rodina. Comparison theorem for systems of differential equations and its application to estimate the average time benefit from resource collection. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 3-17. http://geodesic.mathdoc.fr/item/IIMI_2024_63_a0/
[1] Chaplygin S.A., “Foundations of a new method of approximate integration of differential equations”, Collected works, v. 1, Gostekhizdat, Moscow, 1919, 348–368
[2] Vasil’eva A.B., Nefedov N.N., Comparison theorems. Chaplygin’s method of differential inequalities, Moscow State University, Moscow, 2007
[3] Chaplygin S.A., Approximate integration of a system of two differential equations, Gostekhizdat, Moscow, 1920, 402–419
[4] Babkin B.N., “Approximate integration of systems of ordinary differential equations of the first order by the method of S.A. Chaplygin”, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 18:5 (1954), 477–484 (in Russian) | MR | Zbl
[5] Khan Z.A., “On some fundamental integrodifferential inequalities”, Applied Mathematics, 5:19 (2014), 2968–2973 | DOI
[6] Takamura H., “Improved Kato’s lemma on ordinary differential inequality and its application to semilinear wave equations”, Nonlinear Analysis, 125 (2015), 227–240 | DOI | MR | Zbl
[7] Zhukovskiy E.S., Takhir Kh.M.T., “Comparison of solutions to boundary-value problems for linear functional-differential equations”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 28:3 (2018), 284–292 (in Russian) | DOI | MR | Zbl
[8] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR | Zbl
[9] Benarab S., “On Chaplygin’s theorem for an implicit differential equation of order $n$”, Russian Universities Reports. Mathematics, 26:135 (2021), 225–233 (in Russian) | DOI | Zbl
[10] Benarab S., Zhukovskiy E.S., “On the conditions of existence coincidence points for mappings in partially ordered spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 10–16 (in Russian) | DOI
[11] Zhukovskiy E.S., “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Mathematical Journal, 30:1 (2019), 73–94 | DOI | MR
[12] Kuzenkov O.A., Ryabova E.A., Mathematical modeling of processes of selection, Nizhny Novgorod State University, Nizhny Novgorod, 2007
[13] Matrosov V.M., “The comparison principle with a vector-valued Ljapunov function. I”, Differential Equations, 4:8 (1968), 1374–1386 (in Russian) | Zbl
[14] Ważewski T., “Systèmes des èquations et des inègalitès diffèrentieles ordinaires aux deuxièmes membres monotones et leurs applications”, Annales de la Sociètè Polonaise de Mathèmatique, 23 (1950), 112–166 | Zbl
[15] Rodina L.I., Woldeab M.S., “On the monotonicity of solutions of nonlinear systems with respect to the initial conditions”, Differential Equations, 59:8 (2023), 1025–1031 | DOI | DOI | Zbl
[16] Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P., “The key approaches and review of current researches on dynamics of structured and interacting populations”, Computer Research and Modeling, 11:1 (2019) (in Russian) | DOI
[17] Kirillov A.N., Sazonov A.M., “A hybrid model of population dynamics with refuge–regime: regularization and self-organization”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:3 (2023), 467–482 (in Russian) | DOI
[18] Rodina L.I., “Optimization of average time profit for a probability model of the population subject to a craft”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 28:1 (2018) (in Russian) | DOI | Zbl
[19] Rodina L.I., “Properties of average time profit in stochastic models of harvesting a renewable resourse”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 28:2 (2018), 213–221 (in Russian) | DOI | Zbl
[20] Woldeab M.S., Rodina L.I., “About the methods of extracting a biological resource that provide the maximum average time benefit”, Russian Mathematics, 66:1 (2022), 8–18 | DOI | DOI | Zbl
[21] Riznichenko G.Yu., Lectures on mathematical models in biology. Part 1. Mathematical biology, biophysics, Regular and Chaotic Dynamics, Izhevsk, 2002
[22] Woldeab M.S., Rodina L.I., “About the methods of renewable resource extraction from the structured population”, Russian Universities Reports. Mathematics, 27:137 (2022), 16–26 (in Russian) | DOI
[23] Belyakov A.O., Davydov A.A., “Efficiency optimization for the cyclic use of a renewable resource”, Proceedings of the Steklov Institute of Mathematics, 299:1 (2017), 14–21 | DOI | DOI
[24] Aseev S.M., Veliov V.M., “Another view of the maximum principle for infinite-horizon optimal control problems in economics”, Russian Mathematical Surveys, 74:6 (2019), 963–1011 | DOI | DOI | Zbl
[25] Rodina L.I., Hammadi A.H., “Optimization problems for models of harvesting a renewable resourse”, Journal of Mathematical Sciences, 250:1 (2020), 113–122 | DOI | Zbl
[26] Rodina L.I., Chernikova A.V., “On infinite-horizon optimal exploitation of a renewable resource”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 29:1 (2023), 167–179 (in Russian) | DOI