Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2023_62_a6, author = {T. S. Tinyukova and Yu. P. Chuburin}, title = {Eigenvalues and eigenfunctions of the perturbed {non-Hermitian} {SSH} {Hamiltonian} with {PT} symmetry}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {87--95}, publisher = {mathdoc}, volume = {62}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2023_62_a6/} }
TY - JOUR AU - T. S. Tinyukova AU - Yu. P. Chuburin TI - Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2023 SP - 87 EP - 95 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2023_62_a6/ LA - ru ID - IIMI_2023_62_a6 ER -
%0 Journal Article %A T. S. Tinyukova %A Yu. P. Chuburin %T Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2023 %P 87-95 %V 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2023_62_a6/ %G ru %F IIMI_2023_62_a6
T. S. Tinyukova; Yu. P. Chuburin. Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 87-95. http://geodesic.mathdoc.fr/item/IIMI_2023_62_a6/
[1] Kitaev A.Yu., “Unpaired Majorana fermions in quantum wires”, Physics-Uspekhi, 44:10 suppl. (2001), s131–s136 | DOI
[2] von Oppen F., Peng Yang, Pientka F., “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics, Oxford University Press, 2017, 387–450 | DOI | MR
[3] Hasan M.Z., Kane C.L., “Colloquium: Topological insulators”, Reviews of Modern Physics, 82:4 (2010), 3045–3067 | DOI
[4] Asbóth J.K., Oroszlány L., Pályi A., A short course on topological insulators. Band structure and edge states in one and two dimensions, Springer, Cham, 2016 | DOI | MR | Zbl
[5] Okuma Nobuyuki, Sato Masatoshi, “Non-Hermitian topological phenomena: a review”, Annual Review of Condensed Matter Physics, 14 (2023), 83–107 | DOI
[6] Yao Shunyu, Wang Zhong, “Edge states and topological invariants of non-Hermitian systems”, Physical Review Letters, 121:8 (2018), 086803 | DOI
[7] Ashida Yuto, Gong Zongping, Ueda Masahito, “Non-Hermitian physics”, Advances in Physics, 69:3 (2020), 249–435 | DOI
[8] Gong Zongping, Ashida Yuto, Kawabata Kohei, Takasan Kazuaki, Higashikawa Sho, Ueda Masahito, “Topological phases of non-Hermitian systems”, Physical Review X, 8:3 (2018), 031079 | DOI
[9] Bergholtz E.J., Budich J.C., Kunst F.K., “Exceptional topology of non-Hermitian systems”, Reviews of Modern Physics, 93:1 (2021), 015005 | DOI | MR
[10] Lin Rijia, Tai Tommy, Li Linhu, Lee Ching Hua, “Topological non-Hermitian skin effect”, Frontiers of Physics, 18:5 (2023), 53605 | DOI
[11] Banerjee Ayan, Sarkar Ronika, Dey Soumi, Narayan Awadhesh, “Non-Hermitian topological phases: principles and prospects”, Journal of Physics: Condensed Matter, 35:33 (2023), 333001 | DOI
[12] Su W.P., Schrieffer J.R., Heerger A.J., “Solitons in polyacetilene”, Physical Review Letters, 42:25 (1979), 1698–1701 | DOI
[13] Bender C.M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having PT simmetry”, Physical Review Letters, 80:24 (1998), 5243–5246 | DOI | MR | Zbl
[14] Lieu S., “Topological phases in the non-Hermitian Su–Schrieffer–Heeger model”, Physical Review B, 97:4 (2018), 045106 | DOI | MR
[15] Chuburin Yu.P., Tinyukova T.S., “The emergence of bound states in a superconducting gap at the topological insulator edge”, Physics Letters A, 384:27 (2020), 126694 | DOI | MR
[16] Tinyukova T.S., Chuburin Yu.P., “Majorana states near an impurity in the Kitaev infinite and semi-infinite model”, Theoretical and Mathematical Physics, 200:1 (2019), 1043–1052 | DOI | DOI | MR | Zbl
[17] Taylor J.R., Scattering theory. The quantum theory of nonrelativistic collisions, Courier Corporation, New York, 2006
[18] Edwards R.E., Functional analysis: theory and applications, Courier Corporation, New York, 1995 | MR