Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2023_62_a5, author = {V. G. Pimenov and E. E. Tashirova}, title = {Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {71--86}, publisher = {mathdoc}, volume = {62}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2023_62_a5/} }
TY - JOUR AU - V. G. Pimenov AU - E. E. Tashirova TI - Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2023 SP - 71 EP - 86 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2023_62_a5/ LA - ru ID - IIMI_2023_62_a5 ER -
%0 Journal Article %A V. G. Pimenov %A E. E. Tashirova %T Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2023 %P 71-86 %V 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2023_62_a5/ %G ru %F IIMI_2023_62_a5
V. G. Pimenov; E. E. Tashirova. Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 71-86. http://geodesic.mathdoc.fr/item/IIMI_2023_62_a5/
[1] Wu Jianhong, Theory and applications of partial functional differential equations, Springer, New York, 1996 | DOI | MR | Zbl
[2] Polyanin A.D., Sorokin V.G., Zhurov A.I., Delay ordinary and partial differential equations, Chapman and Hall/CRC, 2023 | DOI
[3] Liu Pan-Ping, “Periodic solutions in an epidemic model with diffusion and delay”, Applied Mathematics and Computation, 265 (2015), 275–291 | DOI | MR | Zbl
[4] Hattaf K., Yousfi N., “A generalized HBV model with diffusion and two delays”, Computers and Mathematics with Applications, 69:1 (2015), 31–40 | DOI | MR | Zbl
[5] Cheng Yueling, Lu Dianchen, Zhou Jiangbo, Wei Jingdong, “Existence of traveling wave solutions with critical speed in a delayed diffusive epidemic model”, Advances in Difference Equations, 2019:1 (2019), 494 | DOI | MR
[6] Jia Yunfeng, “Bifurcation and pattern formation of a timor-immune model with time-delay and diffusion”, Mathematics and Computers in Simulation, 178 (2020), 92–108 | DOI | MR | Zbl
[7] Polyanin A.D., Sorokin V.G., “New exact solutions of nonlinear wave type PDE with delay”, Applied Mathematics Letters, 108 (2020), 106512 | DOI | MR | Zbl
[8] Pimenov V.G., Difference methods of solution of partial differential equations with heredity, Ural State University, Yekaterinburg, 2014
[9] Solodushkin S.I., Yumanova I.F., de Staelen R.H., “First order partial differential equations with time delay and retardation of a state variable”, Journal of Computational and Applied Mathematics, 289 (2015), 322–330 | DOI | MR | Zbl
[10] Hendy A.S., de Staelen R.H., Pimenov V.G., “A semi-linear delayed diffusion-wave system with distributed order in time”, Numerical Algorithms, 77:3 (2018), 885–903 | DOI | MR | Zbl
[11] Li Lili, Zhou Boya, Chen Xiaoli, Wang Zhiyong, “Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay”, Applied Mathematics and Computation, 337 (2018), 144–152 | DOI | MR | Zbl
[12] Hendy A.S., Macías-Díaz J.E., “A novel discrete Gronwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations”, Communications in Nonlinear Science and Numerical Simulation, 73 (2019), 110–119 | DOI | MR | Zbl
[13] Xu Xiuxiu, Huang Qiumei, “Discontinuous Galerkin time stepping for semilinear parabolic problems with time constant delay”, Journal of Scientific Computing, 96:2 (2023), 57 | DOI | MR
[14] Pimenov V.G., Tashirova E.E., “Numerical methods for solving a hereditary equation of hyperbolic type”, Proceedings of the Steklov Institute of Mathematics, 281:suppl. 1 (2013), 126–136 | DOI | MR
[15] Deng Dingwen, Chen Jingliang, “Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays”, Networks and Heterogeneous Media, 18:1 (2023), 412–443 | DOI | MR
[16] Zhang Chengjian, Tan Zengqiang, “Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations”, Communications in Nonlinear Science and Numerical Simulation, 91 (2020), 105461 | DOI | MR | Zbl
[17] Kim A.V., Pimenov V.G., i-Smooth analysis and numerical methods for solving functional differential equations, Regulyarnaya i Khaoticheskaya Dinamika, Moscow-Izhevsk, 2004
[18] Samarskii A.A., Gulin A.V., Numerical methods, Nauka, Moscow, 1989
[19] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimal control, Nauka, Moscow, 1979 | MR