The differential game “Cossacks–robbers” on time scales
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 56-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In finite-dimensional Euclidean space, we address the problem of simple pursuit of a group of evaders by a group of pursuers in a given time scale with equal opportunities for all participants. The set of controls of each participant is a sphere of unit radius with its center at the origin. The goal of the group of pursuers is to catch all evaders. The goal sets are the origin. The goal of the evaders is the opposite one, namely, for at least one evader to avoid capture. Conditions for solvability of the local and global problems of evasion and the upper and lower estimates of the minimal number of evaders avoiding a given number of pursuers from any initial positions are obtained.
Keywords: differential game, group pursuit, pursuer, evader, evasion problem
Mots-clés : time scale.
@article{IIMI_2023_62_a4,
     author = {E. S. Mozhegova and N. N. Petrov},
     title = {The differential game {{\textquotedblleft}Cossacks{\textendash}robbers{\textquotedblright}} on time scales},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {56--70},
     publisher = {mathdoc},
     volume = {62},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_62_a4/}
}
TY  - JOUR
AU  - E. S. Mozhegova
AU  - N. N. Petrov
TI  - The differential game “Cossacks–robbers” on time scales
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 56
EP  - 70
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_62_a4/
LA  - en
ID  - IIMI_2023_62_a4
ER  - 
%0 Journal Article
%A E. S. Mozhegova
%A N. N. Petrov
%T The differential game “Cossacks–robbers” on time scales
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 56-70
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_62_a4/
%G en
%F IIMI_2023_62_a4
E. S. Mozhegova; N. N. Petrov. The differential game “Cossacks–robbers” on time scales. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 56-70. http://geodesic.mathdoc.fr/item/IIMI_2023_62_a4/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | Zbl

[2] Pontryagin L.S., Selected scientific works, v. 2, Nauka, Moscow, 1988

[3] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 https://www.springer.com/gp/book/9781461283188 | MR | MR | Zbl

[4] Friedman A., Differential games, John Wiley and Sons, New York, 1971 | MR | Zbl

[5] Hajek O., Pursuit games, Academic Press, New York, 1975 | MR | Zbl

[6] Chikrii A.A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[7] Grigorenko N.L., Mathematical methods for control of several dynamic processes, Moscow State University, Moscow, 1990

[8] Blagodatskikh A.I., Petrov N.N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[9] Petrov N.N., Petrov N.Nikandrovich, “The “Cossack–robber” differential game”, Differentsial’nye Uravneniya, 19:8 (1983), 1366–1374 (in Russian) | MR | Zbl

[10] Petrov N.N., “One estimate in a differential game with many evaders”, Vestnik Leningradskogo Universiteta. Matematika. Mekhanika. Astronomiya. Issue 4, 1985, no. 22, 107–109 (in Russian) | Zbl

[11] Prokopovich P.V., Chikrii A.A., “A linear evasion problem for interacting groups of objects”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 583–591 | DOI | MR | Zbl

[12] Bannikov A.S., “Some non-stationary problems of group pursuit”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2013, no. 1(41), 3–46 (in Russian) | Zbl

[13] Petrov N.N., “Existence of the value of a many-person game of pursuit”, Journal of Applied Mathemitics and Mechanics, 58:4 (1994), 593–600 | DOI | MR | Zbl

[14] Ahmed I., Kumam W., Ibragimov G., Rilwan J., “Pursuit differential game problem with multiple players on a closed convex set with more general integral constraints”, Thai Journal of Mathematics, 18:2 (2020), 551–561 http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/3203 | MR | Zbl

[15] Ibragimov G., Ferrara M., Kuchkarov A., Pansera B.A., “Simple motion evasion differential game of many pursuers and evaders with integral constraints”, Dynamic Games and Applications, 8:2 (2018), 352–378 | DOI | MR | Zbl

[16] Yan Rui, Shi Zongying, Zhong Yisheng, “Task assignment for multiplayer reach–avoid games in convex domains via analytical barriers”, IEEE Transactions on Robotics, 36:1 (2020), 107–124 | DOI

[17] Mittal A., Jain A., Kumar A., Tiwari R., “Pursuit–evasion: multiple pursuer pursue multiple evader using wavefront and Hungarian method”, Proceedings of the International Conference on Computing and Communication Systems, 2018, 473–488 | DOI

[18] Petrov N.N., Schelchkov K.A., “On the interrelation of two nonstationary problems with multiple evaders”, International Game Theory Review, 17:4 (2015), 1550013 | DOI | MR | Zbl

[19] Rusnak I., “The lady, the bandits and the body guards — a two team dynamic game”, IFAC Proceedings Volumes, 38:1 (2005), 441–446 | DOI

[20] Pierson A., Wang Zijian, Schwager M., “Intercepting Rogue Robots: An algorithm for capturing multiple evaders with multiple pursuers”, IEEE Robotics and Automation Letters, 2:2 (2017), 530–537 | DOI | MR

[21] Sun Zhiyuan, Sun Hanbing, Li Ping, Zou Jin, “Self-organizing cooperative pursuit strategy for multi-USV with dynamic obstacle ships”, Journal of Marine Science and Engineering, 10:5 (2022), 562 | DOI | MR

[22] Sun Wei, Tsiotras P., Yezzi A.J., “Multiplayer pursuit–evasion games in three-dimensional flow fields”, Dynamic Games and Applications, 9:4 (2019), 1188–1207 | DOI | MR | Zbl

[23] Petrov N.N., Solov’eva N.A., “Multiple capture of given number of evaders in linear recurrent differential games”, Journal of Optimization Theory and Applications, 182:1 (2019), 417–429 | DOI | MR | Zbl

[24] Petrov N.N., Narmanov A.Ya., “Multiple capture of a given number of evaders in a problem with fractional derivaties and a simple martix”, Proceedings of the Steklov Institute of Mathematics, 309:suppl. 1 (2020), S105–S115 | DOI | DOI | MR | MR

[25] Petrov N.N., “Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales”, Dynamic Games and Applications, 12:2 (2022), 632–642 | DOI | MR | Zbl

[26] Blagodatskikh A.I., “Synchronous implementation of simultaneous multiple captures of evaders”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 61 (2023), 3–26 (in Russian) | DOI | MR | Zbl

[27] Guseinov G.Sh., “Integration on time scales”, Journal of Mathematical Analysis and Applications, 285:1 (2003), 107–127 | DOI | MR | Zbl

[28] Cabada A., Vivero D.R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Mathematical and Computer Modelling, 43:1–2 (2006), 194–207 | DOI | MR | Zbl

[29] Petrov N.N., “The problem of simple group pursuit with phase constraints in time scales”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 30:2 (2020), 249–258 (in Russian) | DOI | MR | Zbl