A linear group pursuit problem with fractional derivatives and different player capabilities
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 43-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a finite-dimensional Euclidean space, the problem of pursuit of one evader by a group of pursuers is considered, described by a system of the form $$ D^{(\alpha)}x_i = a_i x_i + u_i, \ u_i \in U_i,\quad D^{(\alpha)}y = ay + v, \ v \in V, $$ where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha \in (1, 2)$ of the function $f$. Sets of admissible controls $U_i$, $V$ are convex compacts, $a_i$, $a$ are real numbers. Terminal sets are convex compacts. Sufficient conditions for the solvability of the problems of pursuit and evasion are obtained. In the study, the method of resolving functions is used as the basic one.
Keywords: differential game, group pursuit, pursuer, evader, fractional derivative.
@article{IIMI_2023_62_a3,
     author = {A. I. Machtakova},
     title = {A linear group pursuit problem with fractional derivatives and different player capabilities},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {62},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_62_a3/}
}
TY  - JOUR
AU  - A. I. Machtakova
TI  - A linear group pursuit problem with fractional derivatives and different player capabilities
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 43
EP  - 55
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_62_a3/
LA  - ru
ID  - IIMI_2023_62_a3
ER  - 
%0 Journal Article
%A A. I. Machtakova
%T A linear group pursuit problem with fractional derivatives and different player capabilities
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 43-55
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_62_a3/
%G ru
%F IIMI_2023_62_a3
A. I. Machtakova. A linear group pursuit problem with fractional derivatives and different player capabilities. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 43-55. http://geodesic.mathdoc.fr/item/IIMI_2023_62_a3/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | Zbl

[2] Pontryagin L.S., Selected scientific works, v. 2, Nauka, Moscow, 1988

[3] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 https://www.springer.com/gp/book/9781461283188 | MR | MR | Zbl

[4] Hajek O., Pursuit games, Academic Press, New York, 1975 | MR | Zbl

[5] Petrosyan L.A., Differential pursuit games, Leningrad State Universitety, Leningrad, 1977

[6] Subbotin A.I., Chentsov A.G., Guarantee optimization in control problems, Nauka, Moscow, 1981 | MR

[7] Casini M., Criscuoli M., Garulli A., “A discrete-time pursuit–evasion game in convex polygonal environments”, Systems and Control Letters, 125 (2019), 22–28 | DOI | MR | Zbl

[8] Qadir M.Z., Piao Songhao, Jiang Haiyang, Souidi M.E.H., “A novel approach for multi-agent cooperative pursuit to capture grouped evaders”, The Journal of Supercomputing, 76:5 (2020), 3416–3426 | DOI

[9] Chikrii A.A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[10] Grigorenko N.L., Mathematical methods for control of several dynamic processes, Moscow State University, Moscow, 1990

[11] Blagodatskikh A.I., Petrov N.N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[12] Kumkov S.S., Ménec S.L., Patsko V.S., “Zero-sum pursuit–evasion differential games with many objects: Survey of publications”, Dynamic Games and Applications, 7:4 (2017), 609–633 | DOI | MR | Zbl

[13] Alias I.A., Ibragimov G., Rakhmanov A., “Evasion differential games of infinitely many evaders from infinitely many pursuers in Hilbert space”, Dynamic Games and Applications, 7:3 (2017), 347–359 | DOI | MR | Zbl

[14] Petrov N.N., Solov’eva N.A., “Multiple capture of given number of evaders in linear recurrent differential games”, Journal of Optimization Theory and Applications, 182:1 (2019), 417–429 | DOI | MR | Zbl

[15] Petrov N.N., Solov’eva N.A., “Problem of multiple capture of given number of evaders in recurrent differential games”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 19:1 (2022), 371–377 | MR | Zbl

[16] Blagodatskikh A.I., Petrov N.N., “Simultaneous multiple capture of rigidly coordinated evaders”, Dynamic Games and Applications, 9:3 (2019), 594–613 | DOI | MR | Zbl

[17] Liang Li, Deng Fang, Peng Zhihong, Li Xinxing, Zha Wenzhong, “A differential game for cooperative target defense”, Automatica, 102 (2019), 58–71 | DOI | MR | Zbl

[18] Samatov B.T., “The $\Pi$-strategy in a differential game with linear control constraints”, Journal of Applied Mathematics and Mechanics, 78:3 (2014), 258–263 | DOI | MR | Zbl

[19] Mamadaliev N., “Linear differential pursuit games with integral constraints in the presence of delay”, Mathematical Notes, 91:5 (2012), 704–713 | DOI | DOI | MR | Zbl

[20] Éidel’man S.D., Chikrii A.A., “Dynamic game problems of approach for fractional-order equations”, Ukrainian Mathematical Journal, 52:11 (2000), 1787–1806 | DOI | MR | Zbl

[21] Chikrii A.A., Matichin I.I., “Game problems for fractional-order linear systems”, Proceedings of the Steklov Institute of Mathematics, 268:suppl. 1 (2010), S54–S70 | DOI | MR | Zbl

[22] Chikrii A.A., Matychyn I.I., “Game problems for fractional-order systems”, New trends in nanotechnology and fractional calculus applications, Springer, Dordrecht, 2010, 233–241 | DOI | MR | Zbl

[23] Petrov N.N., “One problem of group pursuit with fractional derivatives and phase constraints”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:1 (2017), 54–59 (in Russian) | DOI | MR | Zbl

[24] Petrov N.N., “Multiple capture in a group pursuit problem with fractional derivatives”, Proceedings of the Steklov Institute of Mathematics, 305:suppl. 1 (2019), S150–S157 | DOI | DOI | MR | MR | Zbl

[25] Petrov N.N., “Group pursuit problem in a differential game with fractional derivatives, state constraints, and simple matrix”, Differential Equations, 55:6 (2019), 841–848 | DOI | DOI | MR | Zbl

[26] Bannikov A.S., “Evasion from pursuers in a problem of group pursuit with fractional derivatives and phase constraints”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:3 (2017), 309–314 (in Russian) | DOI | MR | Zbl

[27] Petrov N.N., “Multiple capture in a group pursuit problem with fractional derivatives and phase restrictions”, Mathematics, 9:11 (2021), 1171 | DOI | MR

[28] Caputo M., “Linear models of dissipation whose $Q$ is almost frequency independent — II”, Geophysical Journal International, 13:5 (1967), 529–539 | DOI

[29] Popov A.Yu., Sedletskii A.M., “Distribution of roots of Mittag–Leffler functions”, Journal of Mathematical Sciences, 190:2 (2013), 209–409 | DOI | MR

[30] Chikriy A.A., Chikrii V.K., “Image structure of multivalued mappings in game problems of motion control”, Journal of Automation and Information Sciences, 48:3 (2016), 20–35 | DOI | MR

[31] Aubin J.P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990 | MR | Zbl

[32] Chikrii A.A., Matichin I.I., “On the analogue of the Cauchy formula for linear systems of arbitrary fractional order”, Reports of the National Academy of Science of Ukraine, 2007, no. 1, 50–55 (in Russian) | Zbl

[33] Petrov N.N., “Controllability of autonomous systems”, Differentsial’nye Uravneniya, 4:4 (1968), 606–617 (in Russian) | Zbl

[34] Dzhrbashyan M.M., Integral transforms and representations of functions in the complex domain, Nauka, Moscow, 1966 | MR

[35] Pollard H., “The completely monotonic character of the Mittag–Leffler function $E_a(-x)$”, Bulletin of the American Mathematical Society, 54:12 (1948), 1115–1116 | DOI | MR | Zbl