On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 187-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

For piecewise continuous monotone functions defined on a bounded interval $[-b;b]$, a monotone smooth approximation $Q(x)$ of any prescribed accuracy in the metric of the space $\mathbf{C}(\Pi)$ with as small as desired measure of the difference $[-b;b]\setminus\Pi$, $\Pi\subset[-b;b]$, is constructed using translations and dilations of the Laplace function (integral). In fact, this extends to the case of piecewise continuous monotone functions the result (obtained by the author formerly) on arbitrarily exact in the metric of the space $\mathbf{C}[-b;b]$ monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral. Besides, we suggest a new way of approximation in the form of linear combination of translations and dilations of the Laplace integral. Finally, we give and discuss concrete numerical examples of using approximation ways under study for a piecewise constant (stepwise) monotone function and for a piecewise continuous monotone function. Here, we also compare the results obtained for two discussed ways of approximation.
Keywords: piecewise continuous monotone functions, uniform approximation, Laplace integral, Gaussian function, quadratic exponential.
@article{IIMI_2023_61_a9,
     author = {A. V. Chernov},
     title = {On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the {Laplace} integral},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {187--205},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a9/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 187
EP  - 205
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a9/
LA  - ru
ID  - IIMI_2023_61_a9
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 187-205
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a9/
%G ru
%F IIMI_2023_61_a9
A. V. Chernov. On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 187-205. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a9/

[1] Robbins H., Monro S., “A stochastic approximation method”, The Annals of Mathematical Statistics, 22:3 (1951), 400–407 | DOI | MR | Zbl

[2] Goncharskii A.V., Cherepashchuk A.M., Yagola A.G., Numerical methods for solving inverse problems in astrophysics, Nauka, Moscow, 1978 | MR | Zbl

[3] Goncharskii A.V., Cherepashchuk A.M., Yagola A.G., Incorrect problems in astrophysics, Nauka, Moscow, 1985

[4] Chernov A.V., “On uniform monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral”, Computational Mathematics and Mathematical Physics, 62:4 (2022), 564–580 | DOI | MR | Zbl

[5] Chernov A.V., “On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:2 (2017), 267–282 (in Russian) | DOI | MR | Zbl

[6] Chernov A.V., “On the application of Gaussian functions for discretization of optimal control problems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:4 (2017), 558–575 (in Russian) | DOI | MR | Zbl

[7] Chernov A.V., “On application of Gaussian functions for numerical solution of optimal control problems”, Automation and Remote Control, 80:6 (2019), 1026–1040 | DOI | DOI | MR | Zbl

[8] Chernov A.V., “Gaussian functions combined with Kolmogorov's theorem as applied to approximation of functions of several variables”, Computational Mathematics and Mathematical Physics, 60:5 (2020), 766–782 | DOI | DOI | MR | Zbl

[9] Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, 1992 | DOI | MR | Zbl | Zbl

[10] Novikov I.Ya., Protasov V.Yu., Skopina M.A., Wavelet theory, AMS, Providence, 2011 | MR | Zbl | Zbl

[11] Maz'ya V., Schmidt G., “On approximate approximations using Gaussian kernels”, IMA Journal of Numerical Analysis, 16:1 (1996), 13–29 | DOI | MR | Zbl

[12] Lanzara F., Maz'ya V., Schmidt G., “Approximate approximations from scattered data”, Journal of Approximation Theory, 145:2 (2007), 141–170 | DOI | MR | Zbl

[13] Maz'ya V., Schmidt G., Approximate approximations, AMS, Providence, 2007 | MR | Zbl

[14] Baxter B.J.C., Sivakumar N., “On shifted cardinal interpolation by Gaussians and multiquadratics”, Journal of Approximation Theory, 87:1 (1996), 36–59 | DOI | MR | Zbl

[15] Riemenschneider S.D., Sivakumar N., “On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants”, Journal d'Analyse Mathématique, 79:1 (1999), 33–61 | DOI | MR | Zbl

[16] Riemenschneider S.D., Sivakumar N., “Cardinal interpolation by Gaussian functions: A survey”, The Journal of Analysis, 8 (2000), 157–178 | MR | Zbl

[17] Luh Lin-Tian, “The shape parameter in the Gaussian function”, Computers and Mathematics with Applications, 63:3 (2012), 687–694 | DOI | MR | Zbl

[18] Hamm K., “Approximation rates for interpolation of Sobolev functions via Gaussians and allied functions”, Journal of Approximation Theory, 189 (2015), 101–122 | DOI | MR | Zbl

[19] Hangelbroek T., Madych W., Narcowich F., Ward J.D., “Cardinal interpolation with Gaussian kernels”, Journal of Fourier Analysis and Applications, 18:1 (2012), 67–86 | DOI | MR | Zbl

[20] Fornberg B., Larsson E., Flyer N., “Stable computations with Gaussian radial basis functions”, SIAM Journal on Scientific Computing, 33:2 (2011), 869–892 | DOI | MR | Zbl

[21] Madych W.R., Nelson S.A., “Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation”, Journal of Approximation Theory, 70:1 (1992), 94–114 | DOI | MR | Zbl

[22] Griebel M., Schneider M., Zenger C., “A combination technique for the solution of sparse grid problems”, Iterative methods in linear algebra, Proceedings of the IMACS international symposium (Brussels, Belgium, 2–4 April, 1991), North-Holland, Amsterdam, 1992, 263–281 | MR | Zbl

[23] Georgoulis E., Levesley J., Subhan F., “Multilevel sparse kernel-based interpolation”, SIAM Journal on Scientific Computing, 35:2 (2013), A815–A831 | DOI | MR | Zbl

[24] Buhmann M.D., Radial basis functions. Theory and implementations, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[25] Shisha O., “Monotone approximation”, Pacific Journal of Mathematics, 15:2 (1965), 667–671 | DOI | MR | Zbl

[26] Roulier J.A., “Monotone approximation of certain classes of function”, Journal of Approximation Theory, 1:3 (1968), 319–324 | DOI | MR | Zbl

[27] Lorentz G.G., Zeller K.L., “Degree of approximation by monotone polynomials. I”, Journal of Approximation Theory, 1:4 (1968), 501–504 | DOI | MR | Zbl

[28] DeVore R.A., “Monotone approximation by polynomials”, SIAM Journal on Mathematical Analysis, 8:5 (1977), 906–921 | DOI | MR | Zbl

[29] DeVore R.A., Yu Xiang Ming, “Pointwise estimates for monotone polynomial approximation”, Constructive Approximation, 1 (1985), 323–331 | DOI | MR | Zbl

[30] Shevchuk I.A., “Approximation of monotone functions by monotone polynomials”, Russian Academy of Sciences. Sbornik Mathematics, 76:1 (1993), 51–64 | DOI | MR | Zbl

[31] DeVore R.A., Leviatan D., Shevchuk I.A., “Approximation of monotone functions: A counter example”, Proceedings of Chamonix (1996), Vanderbilt University Press, Nashville, 1997, 95–102 | MR | Zbl

[32] Gilewicz J., Konovalov V.N., Leviatan D., “Widths and shape-preserving widths of Sobolev-type classes of s-monotone functions”, Journal of Approximation Theory, 140:2 (2006), 101–126 | DOI | MR | Zbl

[33] Kunsch R.J., “The difficulty of Monte Carlo approximation of multivariate monotone functions”, Journal of Approximation Theory, 241 (2019), 33–56 | DOI | MR | Zbl

[34] Moré J.J., Thuente D.J., “Line search algorithms with guaranteed sufficient decrease”, ACM Transactions on Mathematical Software, 20:3 (1994), 286–307 | DOI | MR | Zbl