Integration of the mKdV Equation with nonstationary coefficients and additional terms in the case of moving eigenvalues
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 137-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the Cauchy problem for the non-stationary modified Korteweg–de Vries equation with an additional term and a self-consistent source in the case of moving eigenvalues. Also, the evolution of the scattering data of the Dirac operator is obtained, the potential of which is the solution of the loaded modified Korteweg–de Vries equation with a self-consistent source in the class of rapidly decreasing functions. Specific examples are given to illustrate the application of the obtained results.
Keywords: Gelfand–Levitan–Marchenko integral equation, system of Dirac equations, scattering data.
Mots-clés : Jost solutions
@article{IIMI_2023_61_a7,
     author = {A. B. Khasanov and U.A. Hoitmetov and Sh. Q. Sobirov},
     title = {Integration of the {mKdV} {Equation} with nonstationary coefficients and additional terms in the case of moving eigenvalues},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a7/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - U.A. Hoitmetov
AU  - Sh. Q. Sobirov
TI  - Integration of the mKdV Equation with nonstationary coefficients and additional terms in the case of moving eigenvalues
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 137
EP  - 155
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a7/
LA  - en
ID  - IIMI_2023_61_a7
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A U.A. Hoitmetov
%A Sh. Q. Sobirov
%T Integration of the mKdV Equation with nonstationary coefficients and additional terms in the case of moving eigenvalues
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 137-155
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a7/
%G en
%F IIMI_2023_61_a7
A. B. Khasanov; U.A. Hoitmetov; Sh. Q. Sobirov. Integration of the mKdV Equation with nonstationary coefficients and additional terms in the case of moving eigenvalues. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 137-155. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a7/

[1] Wadati M., “The exact solution of the modified Korteweg-de Vries equation”, Journal of the Physical Society of Japan, 32:6 (1972), 1681–1681 | DOI | MR

[2] Leblond H., Sanchez F., “Models for optical solitons in the two-cycle regime”, Physical Review A, 67:1 (2003), 013804 | DOI

[3] Leblond H., Mihalache D., “Models of few optical cycle solitons beyond the slowly varying envelope approximation”, Physics Reports, 523:2 (2013), 61–126 | DOI | MR

[4] Ono H., “Soliton fission in anharmonic lattices with reflectionless inhomogeneity”, Journal of the Physical Society of Japan, 61:12 (1992), 4336–4343 | DOI

[5] Kakutani T., Ono H., “Weak non-linear hydromagnetic waves in a cold collision-free plasma”, Journal of the Physical Society of Japan, 26:5 (1969), 1305–1318 | DOI | MR

[6] Konno K., Ichikawa Y.H., “A modified Korteweg-de Vries equation for ion acoustic waves”, Journal of the Physical Society of Japan, 37:6 (1974), 1631–1636 | DOI | MR

[7] Watanabe S., “Ion acoustic soliton in plasma with negative ion”, Journal of the Physical Society of Japan, 53:3 (1984), 950–956 | DOI

[8] Lonngren K.E., “Ion acoustic soliton experiment in a plasma”, Optical and Quantum Electronics, 30 (1998), 615–630 | DOI

[9] Ziegler V., Dinkel J., Setzer C., Lonngren K.E., “On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line”, Chaos, Solitons and Fractals, 12:9 (2001), 1719–1728 | DOI | Zbl

[10] Cushman-Roisin B., Pratt L., Ralph E., “A general theory for equivalent barotropic thin jets”, Journal of Physical Oceanography, 23:1 (1993), 91–103 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] Ralph E.A., Pratt L., “Predicting eddy detachment for an equivalent barotropic thin jet”, Journal of Nonlinear Science, 4:1 (1994), 355–374 | DOI | MR | Zbl

[12] Grimshaw R., Pelinovsky E., Talipova T., Kurkin A., “Simulation of the transformation of internal solitary waves on oceanic shelves”, Journal of Physical Oceanography, 34:12 (2004), 2774–2779 | DOI | MR

[13] Grimshaw R., “Internal solitary waves”, Environmental stratified flows, Springer, New York, 2002, 1–27 | DOI | MR

[14] Tappert F.D., Varma C.M., “Asymptotic theory of self-trapping of heat pulses in solids”, Physical Review Letters, 25:16 (1970), 1108–1111 | DOI | MR

[15] Hirota R., “Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons”, Journal of the Physical Society of Japan, 33:5 (1972), 1456–1458 | DOI | MR

[16] Satsuma J., “A Wronskian representation of $N$-soliton solutions of nonlinear evolution equations”, Journal of the Physical Society of Japan, 46:1 (1979), 359–360 | DOI

[17] Nimmo J.J.C., Freeman N.C., “The use of Backlund transformations in obtaining $N$-soliton solutions in Wronskian form”, Journal of Physics A: Mathematical and General, 17:7 (1984), 1415–1424 | DOI | MR | Zbl

[18] Gesztesy T., Schweiger W., “Rational $KP$ and $mKP$-solutions in Wronskian form”, Reports on Mathematical Physics, 30:2 (1991), 205–222 | DOI | MR | Zbl

[19] Khasanov A.B., Urazbayev G.U., “Method for solving the mKdV equation with a self-consistent source”, Uzbek Mathematical Journal, 2003, no. 1, 69–75 (in Russian)

[20] Urazbayev G.U., “On the modified KdV equation with a self-consistent source corresponding to multiple eigenvalues”, Reports of the Academy of Sciences of the Republic of Uzbekistan, 2005, no. 5, 11–14 (in Russian)

[21] Mamedov K.A., “On the integration of the modified Korteweg-de Vries equation with a source of integral type”, Reports of the Academy of Sciences of the Republic of Uzbekistan, 2006, no. 2, 24–28 (in Russian)

[22] Demontis F., “Exact solutions of the modified Korteweg-de Vries equation”, Theoretical and Mathematical Physics, 168:1 (2011), 886–897 | DOI | DOI | MR

[23] Mamedov K.A., “Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues”, Russian Mathematics, 64:10 (2020), 66–78 | DOI | DOI | MR | Zbl

[24] Wu Jianping, Geng Xianguo, “Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation”, Communications in Nonlinear Science and Numerical Simulation, 53 (2017), 83–93 | DOI | MR

[25] Zhang Guoqiang, Yan Zhenya, “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions”, Physica D: Nonlinear Phenomena, 410 (2020), 132521 | DOI | MR | Zbl

[26] Vaneeva O., “Lie symmetries and exact solutions of variable coefficient mKdV equations: An equivalence based approach”, Communications in Nonlinear Science and Numerical Simulation, 17:2 (2012), 611–618 | DOI | MR | Zbl

[27] Ablowitz M.J., Sigur H., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981 | MR | MR | Zbl

[28] Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and nonlinear wave equations, Academic Press, London, 1982 | MR | Zbl

[29] Nakhushev A.M., Equations of mathematical biology, Vysshaya Shkola, Moscow, 1995

[30] Nakhushev A.M., “Loaded equations and their applications”, Differentsial'nye Uravneniya, 19:1 (1983), 86–94 (in Russian) | MR | Zbl

[31] Kozhanov A.I., “Nonlinear loaded equations and inverse problems”, Computational Mathematics and Mathematical Physics, 44:4 (2004), 657–678 | MR | Zbl

[32] Hasanov A.B., Hoitmetov U.A., “On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions”, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 47:2 (2021), 250–261 | DOI | MR | Zbl

[33] Hoitmetov U.A., “Integration of the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions”, Siberian Advances in Mathematics, 33:2 (2022), 102–114 | DOI | MR

[34] Khasanov A.B., Hoitmetov U.A., “Integration of the general loaded Korteweg-de Vries equation with an integral type source in the class of rapidly decreasing complex-valued functions”, Russian Mathematics, 65:7 (2021), 43–57 | DOI | DOI | MR | Zbl

[35] Khasanov A.B., Hoitmetov U.A., “On complex-valued solutions of the general loaded Korteweg-de Vries equation with a source”, Differensial Equations, 58:3 (2022), 381–391 | DOI | MR | Zbl

[36] Hoitmetov U., “Integration of the loaded general Korteweg-de Vries equation in the class of rapidly decreasing complex-valued functions”, Eurasian Mathematical Journal, 13:2 (2022), 43–54 | DOI | MR

[37] Khasanov A.B., Hoitmetov U.A., “On integration of the loaded mKdV equation in the class of rapidly decreasing functions”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya «Matematika», 38 (2021), 19–35 | DOI | MR | Zbl

[38] Hoitmetov U.A., “Integration of the sine-Gordon equation with a source and an additional term”, Reports on Mathematical Physics, 90:2 (2022), 221–240 | DOI | MR