Designing asymptotic observers for linear completely regular differential algebraic systems with delay
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 114-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of generating a solution estimate based on the observed output signal data for linear autonomous completely regular differential algebraic systems with commensurate delays. To obtain an estimate for the solution, two types of observers are proposed: an asymptotic observer and an asymptotic observer with bounded error. An asymptotic observer is characterized by the fact that its error asymptotically approaches zero. In this case, if the original system has the property of final observability, then the rate of convergence of the estimation error to zero can be set in advance by choosing the characteristic quasi-polynomial of the homogeneous system that describes the behavior of the error. Otherwise, the estimation error is described by an inhomogeneous system, and the rate of its convergence to zero depends not only on the choice of the characteristic quasi-polynomial of the homogeneous system, but also on the behavior of the inhomogeneous part, the dynamics of which depends on the matrices that determine the structure of the output signal. A distinctive feature of an asymptotic observer with bounded error is that its estimation error remains bounded by some constant depending on the observer's initial condition. In this case, the conditions for the existence of such an observer impose weaker requirements on the parameters of the original system in comparison with the conditions for the existence of an asymptotic observer.
Keywords: linear autonomous completely regular differential-algebraic system, delay, observed output signal, asymptotic observer
Mots-clés : solution estimation, estimation error.
@article{IIMI_2023_61_a6,
     author = {V. E. Khartovskii},
     title = {Designing asymptotic observers for linear completely regular differential algebraic systems with delay},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {114--136},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a6/}
}
TY  - JOUR
AU  - V. E. Khartovskii
TI  - Designing asymptotic observers for linear completely regular differential algebraic systems with delay
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 114
EP  - 136
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a6/
LA  - ru
ID  - IIMI_2023_61_a6
ER  - 
%0 Journal Article
%A V. E. Khartovskii
%T Designing asymptotic observers for linear completely regular differential algebraic systems with delay
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 114-136
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a6/
%G ru
%F IIMI_2023_61_a6
V. E. Khartovskii. Designing asymptotic observers for linear completely regular differential algebraic systems with delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 114-136. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a6/

[1] Luenberger D., “An introduction to observers”, IEEE Transactions on Automatic Control, 16:6 (1971), 596–602 | DOI | MR

[2] Zheng Gang, Bejarano F.J., “Observer design for linear singular time-delay systems”, Automatica, 80 (2017), 1–9 | DOI | MR | Zbl

[3] Hu Guang-Da, “A separation property of the observer-based stabilizing controller for linear delay systems”, Siberian Mathematical Journal, 62:4 (2021), 763–772 | DOI | DOI | MR

[4] Hu Guang-Da, “An observer-based stabilizing controller for linear neutral delay systems”, Siberian Mathematical Journal, 63:4 (2022), 789–800 | DOI | MR

[5] Brivadis L., Andrieu V., Serres U., Gauthier J.-P., “Luenberger observers for infinite-dimensional systems, back and forth nudging, and application to a crystallization process”, SIAM Journal on Control and Optimization, 59:2 (2021), 857–886 | DOI | MR | Zbl

[6] Rodrigues S.S., “Oblique projection exponential dynamical observer for nonautonomous linear parabolic-like equations”, SIAM Journal on Control and Optimization, 59:1 (2021), 464–488 | DOI | MR | Zbl

[7] Sename O., “New trends in design of observers for time-delay systems”, Kybernetika, 37:4 (2001), 427–458 | MR | Zbl

[8] Morse A.S., “Ring models for delay-differential systems”, Automatica, 12:5 (1976), 529–531 | DOI | MR | Zbl

[9] Pourboghrat F., Chyung Dong Hak, “Exact state-variable reconstruction of delay systems”, International Journal of Control, 44:3 (1986), 867–877 | DOI | MR | Zbl

[10] Emre E., Khargonekar P., “Regulation of split linear systems over rings: Coefficient-assignment and observers”, IEEE Transactions on Automatic Control, 27:1 (1982), 104–113 | DOI | MR | Zbl

[11] Il'in A.V., Budanova A.V., Fomichev V.V., “Synthesis of observers for asymptotically observable time delay systems”, Doklady Mathematics, 87:1 (2013), 129–132 | DOI | DOI | MR | Zbl

[12] Manitius A., Triggiani R., “Function space controllability of linear retarded systems: A derivation from abstract operator conditions”, SIAM Journal on Control and Optimization, 16:4 (1978), 599–645 | DOI | MR | Zbl

[13] Watanabe K., “Finite spectrum assignment and observer for multivariable systems with commensurate delays”, IEEE Transactions on Automatic Control, 31:6 (1986), 543–550 | DOI | MR | Zbl

[14] Watanabe K., Ouchi T., “An observer of systems with delays in state variables”, International Journal of Control, 41:1 (1985), 217–229 | DOI | MR

[15] Wang Qing-Guo, Lee Tong Heng, Tan Kok Kiong, “Automatic tuning of finite spectrum assignment controllers for delay system”, Automatica, 31:3 (1995), 477–482 | DOI | MR | Zbl

[16] Metel'skii A.V., “Finite spectrum assignment problem for a differential system of neutral type”, Differential Equations, 51:1 (2015), 69–82 | DOI | DOI | MR | Zbl

[17] Zaitsev V.A., Kim I.G., “On arbitrary spectrum assignment in linear stationary systems with commensurate time delays in state variables by static output feedback”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 315–325 (in Russian) | DOI | MR | Zbl

[18] Zaitsev V.A., Kim I.G., Khartovskii V.E., “Finite spectrum assignment problem for bilinear systems with several delays”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:3 (2019), 319–331 | DOI | MR | Zbl

[19] Zaitsev V.A., Kim I.G., “Spectrum assignment in linear systems with several commensurate lumped and distributed delays in state by means of static output feedback”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 56 (2020), 5–19 (in Russian) | DOI | Zbl

[20] Metel'skii A.V., “Differential-difference observer for a delay system with one-dimensional output”, Differential Equations, 56:4 (2020), 504–522 | DOI | DOI | MR | Zbl

[21] Sename O., Lafay J.-F., Rabah R., “Controllability indices of linear systems with delay”, Kybernetika, 31:6 (1995), 559–580 | MR | Zbl

[22] Khartovskii V.E., “Synthesis of observers for linear systems of neutral type”, Differential Equations, 55:3 (2019), 404–417 | DOI | DOI | MR | Zbl

[23] Khartovskii V.E., “Asymptotic estimates of solutions of linear time-invariant systems of the neutral type with commensurable delays”, Differential Equations, 55:12 (2019), 1649–1664 | DOI | DOI | MR | Zbl

[24] Khartovskii V.E., Control of linear systems of neutral type: qualitative analysis and implementation of feedback, Yanka Kupala State University of Grodno, Grodno, 2022

[25] Metel'skii A.V., Khartovskii V.E., “Finite observer design for linear systems of neutral type”, Automation and Remote Control, 80:12 (2019), 2152–2169 | DOI | DOI | MR | Zbl

[26] Metel'skii A.V., Khartovskii V.E., “Exact reconstruction of the solution for linear neutral type systems”, Differential Equations, 57:2 (2021), 251–271 | DOI | DOI | MR | Zbl

[27] Khartovskii V.E., “Criteria for modal controllability of completely regular differential-algebraic systems with aftereffect”, Differential Equations, 54:4 (2018), 509–524 | DOI | DOI | MR | Zbl

[28] Khartovskii V.E., “Controlling the spectrum of linear completely regular differential-algebraic systems with delays,”, Journal of Computer and Systems Sciences International, 59:1 (2020), 19–38 | DOI | DOI | MR | Zbl

[29] Metel'skii A.V., “Spectral reduction, complete damping, and stabilization of a delay system by a single controller”, Differential Equations, 49:11 (2013), 1405–1422 | DOI | MR | Zbl

[30] Khartovskii V.E., “On a linear autonomous descriptor equation with discrete time. I. Application to the 0-controllability problem”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:2 (2020), 290–-311 (in Russian) | DOI | MR | Zbl

[31] Khartovskii V.E., “On a linear autonomous descriptor equation with discrete time. II. Canonical representation and structural properties”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 56 (2020), 102–121 (in Russian) | DOI | MR | Zbl