Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2023_61_a2, author = {A. R. Danilin and O. O. Kovrizhnykh}, title = {Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {42--56}, publisher = {mathdoc}, volume = {61}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/} }
TY - JOUR AU - A. R. Danilin AU - O. O. Kovrizhnykh TI - Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2023 SP - 42 EP - 56 VL - 61 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/ LA - ru ID - IIMI_2023_61_a2 ER -
%0 Journal Article %A A. R. Danilin %A O. O. Kovrizhnykh %T Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2023 %P 42-56 %V 61 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/ %G ru %F IIMI_2023_61_a2
A. R. Danilin; O. O. Kovrizhnykh. Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 42-56. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/