Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2023_61_a2, author = {A. R. Danilin and O. O. Kovrizhnykh}, title = {Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {42--56}, publisher = {mathdoc}, volume = {61}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/} }
TY - JOUR AU - A. R. Danilin AU - O. O. Kovrizhnykh TI - Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2023 SP - 42 EP - 56 VL - 61 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/ LA - ru ID - IIMI_2023_61_a2 ER -
%0 Journal Article %A A. R. Danilin %A O. O. Kovrizhnykh %T Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2023 %P 42-56 %V 61 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/ %G ru %F IIMI_2023_61_a2
A. R. Danilin; O. O. Kovrizhnykh. Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 42-56. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a2/
[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., The mathematical theory of optimal processes, John Wiley and Sons, New York, 1962 | MR | MR | Zbl
[2] Krasovskii N.N., Theory of motion control. Linear systems, Nauka, Moscow, 1968
[3] Lee E.B., Markus L., Foundations of optimal control theory, Wiley, New York, 1967 | MR | Zbl
[4] Dmitriev M.G., Kurina G.A., “Singular perturbations in control problems”, Automation and Remote Control, 67:1 (2006), 1–43 | DOI | MR | Zbl
[5] Danilin A.R., Il'in A.M., “Asymptotic behavior of the solution of the time-optimality problem for a linear system under perturbation of initial data”, Dokl. Akad. Nauk, 350:2 (1996), 155–157 (in Russian) | MR | Zbl
[6] Danilin A.R., Il'in A.M., “On the structure of the solution of a perturbed optimal-time control problem”, Fundam. Prikl. Mat., 4:3 (1998), 905–926 (in Russian) | MR | Zbl
[7] Galeev E.M., Tikhomirov V.M., A short course in the theory of extremal problems, Moscow State Universitety, Moscow, 1989
[8] Kurina G.A., Nguyen T.H., “Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients”, Computational Mathematics and Mathematical Physics, 52:4 (2012), 524–547 | DOI | MR | Zbl
[9] Kurina G.A., Hoai N.T., “Projector approach for constructing the zero order asymptotic solution for the singularly perturbed linear-quadratic control problem in a critical case”, AIP Conference Proceedings, 1997:1 (2018), 020073 | DOI | MR
[10] Nguyen T.H., “Asymptotic solution of a singularly perturbed optimal problem with integral constraint”, Journal of Optimization Theory and Applications, 190:3 (2021), 931–950 | DOI | MR | Zbl
[11] Danilin A.R., “Asymptotics of the optimal value of the performance functional for a rapidly stabilizing indirect control in the regular case”, Differential Equations, 42:11 (2006), 1545–1552 | DOI | MR | Zbl
[12] Danilin A.R., Parysheva Yu.V., “On the asymptotics of the optimal value of the performance functional in a linear optimal control problem”, Differential Equations, 47:4 (2011), 560–570 | DOI | MR | Zbl
[13] Danilin A.R., “Asymptotic behavior of the optimal cost functional for a rapidly stabilizing indirect control in the singular case”, Computational Mathematics and Mathematical Physics, 46:12 (2006), 2068–2079 | DOI | MR
[14] Shaburov A.A., “Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24:2 (2018), 280–289 (in Russian) | DOI | MR
[15] Danilin A.R., Shaburov A.A., “Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables”, Ufa Mathematical Journal, 11:2 (2019), 82–96 | DOI | MR | Zbl
[16] Dontchev A.L., Perturbations, approximations and sensitivity analysis of optimal control systems, Springer, Berlin, 1983 | DOI | MR | Zbl
[17] Blagodatskikh V.I., Introduction to optimal control, Vysshaya Shkola, Moscow, 2001
[18] Danilin A.R., Kovrizhnykh O.O., “Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 28:1 (2022), 58–73 (in Russian) | DOI | MR