On the exploitation of a population given by a system of linear equations with random parameters
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 27-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a population whose dynamics in the absence of exploitation is given by a system of linear homogeneous differential equations, and some random shares of the resource of each species at fixed times, are extracted from this population. We assume that the harvesting process can be controlled in such a way as to limit the amount of the extracted resource in order to increase the size of the next harvesting. A method for harvesting a resource is described, in which the largest value of the average time benefit is reached with a probability of one, provided that the initial amount of the population is constantly maintained or periodically restored. The harvesting modes are also considered in which the average time benefit is infinite. To prove the main assertions, we use the corollary of the law of large numbers proved by A.N. Kolmogorov. The results on the optimal resource extraction for systems of linear difference equations, a particular case of which are Leslie and Lefkovich population dynamics models, are given.
Keywords: structered populations, average time benefit, non-negative matrices
Mots-clés : optimal exploitation, Leslie matrix.
@article{IIMI_2023_61_a1,
     author = {M. S. Woldeab and L. I. Rodina},
     title = {On the exploitation of a population given by a system of linear equations with random parameters},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {27--41},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a1/}
}
TY  - JOUR
AU  - M. S. Woldeab
AU  - L. I. Rodina
TI  - On the exploitation of a population given by a system of linear equations with random parameters
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 27
EP  - 41
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a1/
LA  - ru
ID  - IIMI_2023_61_a1
ER  - 
%0 Journal Article
%A M. S. Woldeab
%A L. I. Rodina
%T On the exploitation of a population given by a system of linear equations with random parameters
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 27-41
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a1/
%G ru
%F IIMI_2023_61_a1
M. S. Woldeab; L. I. Rodina. On the exploitation of a population given by a system of linear equations with random parameters. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 27-41. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a1/

[1] Leslie P.H., “On the use of matrices in certain population mathematics”, Biometrika, 33:3 (1945), 183–212 | DOI | MR | Zbl

[2] Lefkovitch L.P., “The study of population growth in organisms grouped by stages”, Biometrics, 21:1 (1965), 1–18 | DOI | MR

[3] Logofet D.O., Belova I.N., “Nonnegative matrices as a tool to model population dynamics: Classical models and contemporary expansions”, Journal of Mathematical Sciences, 155:6 (2008), 894–907 | DOI | MR | Zbl

[4] Logofet D.O., “Projection matrices revisited: a potential-growth indicator and the merit of indication”, Journal of Mathematical Sciences, 193:5 (2013), 671–686 | DOI | MR | Zbl

[5] Logofet D.O., Ulanova N.G., “From population monitoring to a mathematical model: The new paradigm of population research”, Zhurnal Obshchei Biologii, 82:4 (2021), 243–269 (in Russian) | DOI

[6] Doubleday W.G., “Harvesting in matrix population models”, Biometrics, 31:1 (1975), 189–200 | DOI | Zbl

[7] Mazurov V.D., Smirnov A.I., “A criterion for the existence of nondestructive controls in the problem of optimal exploitation of an ecosystem with a binary structure”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26:3 (2020), 101–117 (in Russian) | DOI

[8] Smirnov A.I., Mazurov V.D., “A solution algorithm for a problem of optimal exploitation of a system with a binary structure”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27:4 (2021), 142–160 (in Russian) | DOI | MR

[9] Reed W.J., “A stochastic model for the economic management of a renewable resourse”, Mathematical Biosciences, 22 (1974), 313–337 | DOI | MR | Zbl

[10] Reed W.J., “Optimal escapement levels in stochastic and deterministic harvesting models”, Journal of Environmental Economics and Management, 6:4 (1979), 350–363 | DOI | MR | Zbl

[11] Rodina L.I., “Optimization of average time profit for probability model of the population subject to a craft”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:1 (2018), 48–58 (in Russian) | DOI | MR | Zbl

[12] Rodina L.I., “Properties of average time profit in stochastic models of harvesting a renewable resourse”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 213–221 (in Russian) | DOI | MR | Zbl

[13] Hening A., Nguyen D.H., Ungureanu S.C., Wong Tak Kwong, “Asymptotic harvesting of populations in random environments”, Journal of Mathematical Biology, 78:1–2 (2019), 293–329 | DOI | MR | Zbl

[14] Weitzman M.L., “Landing fees vs harvest quotas with uncertain fish stocks”, Journal of Environmental Economics and Management, 43:2 (2002), 325–338 | DOI | Zbl

[15] Hansen L.G., Jensen F., “Regulating fisheries under uncertainty”, Resourse and Energy Economics, 50 (2017), 164–177 | DOI

[16] Liu Lidan, Meng Xinzhu, “Optimal harvesting control and dynamics of two-species stochastic model with delays”, Advances in Difference Equations, 2017:1 (2017), 18 | DOI | MR

[17] Kapaun U., Quaas M.F., “Does the optimal size of a fish stock increase with environmental uncertainties?”, Environmental and Resource Economics, 54:2 (2013), 293–310 | DOI | MR

[18] Tahvonen O., Quaas M.F., Voss R., “Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries”, Journal of Environmental Economics and Management, 92 (2018), 659–676 | DOI

[19] Zhao Yu, Yuan Sanling, “Optimal harvesting policy of a stochastic two-species competitive model with Levy noise in a polluted environment”, Physica A: Statistical Mechanics and its Applications, 477 (2017), 20–33 | DOI | MR | Zbl

[20] Hening A., Tran Ky Quan, Phan Tien Trong, Yin G., “Harvesting of interacting stochastic populations”, Journal of Mathematical Biology, 79:2 (2019), 533–570 | DOI | MR | Zbl

[21] Jensen F., Frost H., Abildtrup J., “Fisheries regulation: A survey of the literature on uncertainty, compliance behavior and asymmetric information”, Marine Policy, 81 (2017), 167–178 | DOI

[22] Liu Meng, “Optimal harvesting of stochastic population models with periodic coefficients”, Journal of Nonlinear Science, 32:2 (2022), 23 | DOI | MR

[23] Masterkov Yu.V., Rodina L.I., “Estimation of average time profit for stochastic structured population”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 56 (2020), 41–49 (in Russian) | DOI | MR | Zbl

[24] Rodin A.A., Rodina L.I., Chernikova A.V., “On how to exploit a population given by a difference equation with random parameters”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:2 (2022), 211–227 (in Russian) | DOI | MR | Zbl

[25] Gantmacher F.R., The theory of matrices. In 2 volumes, AMS Chelsea Publishing, New York, 1959 | MR | MR

[26] Noutsos D., Tsatsomeros M.J., “Reachability and holdability of nonnegative states”, SIAM Journal on Matrix Analysis and Applications, 30:2 (2008), 700–712 | DOI | MR | Zbl

[27] Wazewski T., “Systèmes des équations et des inégalités différentieles ordinaires aux deuxièmes membres monotones et leurs applications”, Annales de la Société Polonaise de Mathématique, 23 (1950), 112–166 | MR | Zbl

[28] Kuzenkov O.A., Ryabova E.A., Mathematical modeling of processes of selection, Nizhny Novgorod State University, Nizhny Novgorod, 2007

[29] Shiryaev A.N., Probability, Springer, New York, 2013 | DOI | MR | Zbl