Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 73-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers 2D and 3D models of transport of suspended particles, taking into account the following factors: movement of aqueous medium; variable density depending on the suspension concentration; multicomponent character of suspension; changes in bottom geometry as a result of suspension sedimentation. The approximation of the three-dimensional diffusion-convection equation is based on splitting schemes into two-dimensional and one-dimensional problems. In this work, we use discrete analogues of convective and diffusion transfer operators in the case of partial cell occupancy. The geometry of the computational domain is described based on the occupancy function. The difference scheme used is a linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients obtained by minimizing the approximation error. This scheme is designed to solve the problem of impurity transfer at large grid Peclet numbers. Based on the results of numerical experiments, conclusions are drawn about the advantage of the 3D model of multicomponent suspension transport in comparison with the 2D model. Computational experiments have been performed to simulate the process of sedimentation of a multicomponent suspension, as well as its effect on the bottom topography and changes in its composition.
Keywords: suspension transport model, variable density, Upwind Leapfrog difference scheme, Standard Leapfrog difference scheme, bottom topography change, parallel algorithms.
@article{IIMI_2022_60_a4,
     author = {A. I. Sukhinov and A. E. Chistyakov and A. M. Atayan and I. Yu. Kuznetsova and V. N. Litvinov and A. V. Nikitina},
     title = {Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {73--89},
     publisher = {mathdoc},
     volume = {60},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a4/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
AU  - A. M. Atayan
AU  - I. Yu. Kuznetsova
AU  - V. N. Litvinov
AU  - A. V. Nikitina
TI  - Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 73
EP  - 89
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a4/
LA  - ru
ID  - IIMI_2022_60_a4
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%A A. M. Atayan
%A I. Yu. Kuznetsova
%A V. N. Litvinov
%A A. V. Nikitina
%T Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 73-89
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a4/
%G ru
%F IIMI_2022_60_a4
A. I. Sukhinov; A. E. Chistyakov; A. M. Atayan; I. Yu. Kuznetsova; V. N. Litvinov; A. V. Nikitina. Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 73-89. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a4/

[1] Kovtun I. I., Protsenko E. A., Sukhinov A. I., Chistyakov A. E., “Calculating the impact on aquatic resources dredging in the White Sea”, Fundamentalnaya i Prikladnaya Gidrofizika, 9:2 (2016), 27–38 (in Russian)

[2] Chernyavskii A. V., “Transformation of bottom zoocenoses in the area of the Grigorovskaya landfill”, Dredging and problems of protection of fish stocks and the environment of fishery reservoirs, Astrakhan, 1984, 208–210 (in Russian)

[3] Lavrenteva G.M., Susloparova O.N., “Results of fisheries monitoring conducted in the eastern part of the Gulf of Finland to assess the impact of hydrotechnical work on aquatic organisms”, Funds of GosNIORKh, 1:331 (2006), 5–11 (in Russian)

[4] Ivanova V.V., “Experimental modeling of zoobenthos collapse during soil dumping”, Funds of GosNIORKh, 1988, no. 85, 107–113 (in Russian)

[5] Adjustment of the "Project for the development of the sand deposit "Sestroretskoye", located in the Gulf of Finland of the Baltic Sea" in connection with the reconstruction of the quarry, LLC Eco-Express-Service, Saint Petersburg, 2012, 50 pp. (in Russian)

[6] Morozov A.E., “Bottom fauna of small rivers and the influence of suspended solids of drainage waters on it”, Funds of GosNIORKh, 1979, no. 2, 108–113 (in Russian)

[7] Gaidzhurov P. P., Saveleva N. A., Dyachenkov V. A., “Finite element modeling of the joint action of flow slide and protective structure”, Advanced Engineering Research, 21:2 (2021), 133–142 (in Russian) | DOI

[8] Solov'ev A. N., Binh Do T., Lesnyak O. N., “Transverse vibrations of a circular bimorph with piezoelectric and piezomagnetic layers”, Vestnik of Don State Technical University, 20:2 (2020), 118–124 (in Russian) | DOI

[9] Soloviev A. N., Tamarkin M. A., Tho N. V., “Finite element modeling method of centrifugal rotary processing”, Vestnik of Don State Technical University, 19:3 (2019), 214–220 (in Russian) | DOI

[10] Samarskii A. A., Vabishchevich P. N., Numerical methods for solving problems of convection–diffusion, Editorial URSS, M., 1999

[11] Belotserkovskii O. M., Gushchin V. A., Shchennikov V. V., “Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid”, USSR Computational Mathematics and Mathematical Physics, 15:1 (1975), 190–200 | DOI | Zbl

[12] Sukhinov A. I., Chistyakov A. E., Protsenko E. A., Sidoryakina V. V., Protsenko S. V., “Accounting method of filling cells for the solution of hydrodynamics problems with a complex geometry of the computational domain”, Mathematical Models and Computer Simulations, 12:2 (2020), 232–245 | DOI | MR

[13] Samarskii A. A., Nikolaev E. S., Methods for solving grid equations, Nauka, M., 1978

[14] Sukhinov A. I., Chistyakov A. E., Kuznetsova I. Y., Protsenko E. A., “Modelling of suspended particles motion in channel”, Journal of Physics: Conference Series, 1479:1 (2020), 012082 | DOI

[15] Sukhinov A. I., Chistyakov A. E., Protsenko E. A., “Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers”, Computer Research and Modeling, 11:5 (2019), 833–848 (in Russian) | DOI

[16] Gushchin V. A., Sukhinov A. I., Nikitina A. V., Chistyakov A. E., Semenyakina A. A., “A model of transport and transformation of biogenic elements in the coastal system and its numerical implementation”, Computational Mathematics and Mathematical Physics, 58:8 (2018), 1316–1333 | DOI | DOI

[17] Voevodin V. V., Voevodin Vl. V., Parallel computing, BKHV-Peterburg, Saint Petersburg, 2010

[18] Chetverushkin B. N., Yakobovskiy M. V., “Numerical algorithms and architecture of HPC systems”, Keldysh Institute Preprints, 2018, 52, 12 pp. (in Russian) | DOI

[19] Sukhinov A. I., Chistyakov A. E., Shishenya A. V., Timofeeva E. F., “Predictive modeling of coastal hydrophysical processes in multiple-processor systems based on explicit schemes”, Mathematical Models and Computer Simulations, 10:5 (2018), 648–658 | DOI | DOI | MR | Zbl

[20] Sukhinov A. I., Chistyakov A. E., Filina A. A., Nikitina A. V., Litvinov V. N., “Supercomputer simulation of oil spills in the Azov Sea”, Bulletin of the South Ural State University. Series «Mathematical Modelling, Programming and Computer Software», 12:3 (2019), 115–129 | DOI