Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2022_60_a2, author = {O. A. Kuvshinov}, title = {About the geometry of the {Cassini} oval, its non-convexity degree and $\varepsilon$-offset layer}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {34--57}, publisher = {mathdoc}, volume = {60}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/} }
TY - JOUR AU - O. A. Kuvshinov TI - About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2022 SP - 34 EP - 57 VL - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/ LA - ru ID - IIMI_2022_60_a2 ER -
%0 Journal Article %A O. A. Kuvshinov %T About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2022 %P 34-57 %V 60 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/ %G ru %F IIMI_2022_60_a2
O. A. Kuvshinov. About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 34-57. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/
[1] Ushakov V. N., Uspenskii A. A., Fomin A. N., $\alpha$-sets and their properties, Deposited in VINITI 02.04.2004, No 543-B2004, IMM UB RAS, Yekaterinburg, 2004, 62 pp. (in Russian)
[2] Ivanov G. E., Weak convex sets and functions: theory and applications, Fizmatlit, M., 2006
[3] Michael E., “Paraconvex sets”, Mathematica Scandinavica, 7:2 (1959), 312–315 | DOI | MR
[4] Ushakov V. N., Uspenskii A. A., “Theorems on the separability of $\alpha$-sets in Euclidean space”, Proceedings of the Steklov Institute of Mathematics, 299, 2017, 231–245 | DOI | DOI | MR
[5] Ushakov V. N., Uspenskii A. A., “$\alpha$-sets in finite dimensional Eulidean spaes and their properties”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 95–120 (in Russian) | DOI | MR | Zbl
[6] Ushakov V. N., Uspenskii A. A., Ershov A. A., “Alpha sets in finite-dimensional Euclidean spaces and their properties”, Constructive Nonsmooth Analysis and Related Topics, CNSA, dedicated to the memory of V. F. Demyanov, 2017 | DOI | MR
[7] Ushakov V. N., Uspenskii A. A., Ershov A. A., “$\alpha$-sets in finite-dimensional Euclidean spaces and their applications on control theory”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 261–272 (in Russian) | DOI | MR
[8] Ushakov V. N., Ershov A. A., Pershakov M. V., “Counterexamples in the theory of $\alpha$-sets”, Mathematical optimization theory and operations research, Springer, Cham, 2019, 329–340 | DOI | MR
[9] Ershov A. A., Kuvshinov O. A., “On properties of intersection of $\alpha$-sets”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 55 (2020), 79–92 (in Russian) | DOI | MR | Zbl
[10] Ershov A. A., Pershakov M. V., “On matching up the alpha-sets with other generalizations of convex sets”, VI Information school of a young scientist, Central Scientific Library, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2018, 143–150 (in Russian) | DOI
[11] Ushakov V. N., Ershov A. A., “Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets”, Doklady Mathematics, 102 (2020), 532–537 | DOI | DOI | MR | MR | Zbl
[12] Ushakov V. N., Ershov A. A., Matviychuk A. R., “On estimating the degree of nonconvexity of reachable sets of control systems”, Proceedings of the Steklov Institute of Mathematics, 315 (2021), 247–256 | DOI | DOI | MR | Zbl
[13] Leichtweiß K. Von, Konvexe Mengen, Springer, Berlin, 1980 | MR | MR | Zbl