About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 34-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the geometry of a closed nonconvex smooth simply connected curve on a plane — of the Cassini oval, as well as the geometry of the $\varepsilon$-layer around the set whose boundary is the Cassini oval. Various analytical representations of the $\varepsilon$-layer boundary are formed, and special points of this boundary are described. The measure of nonconvexity $\alpha$ of a simply connected set whose boundary is the Cassini oval is determined, and the angular characteristic of nonconvexity of its $\varepsilon$-neighborhood is defined.
Keywords: Cassini oval, $\varepsilon$-offset layer, non-convex set, approximation calculation.
Mots-clés : $\alpha$-sets
@article{IIMI_2022_60_a2,
     author = {O. A. Kuvshinov},
     title = {About the geometry of the {Cassini} oval, its non-convexity degree and $\varepsilon$-offset layer},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {34--57},
     publisher = {mathdoc},
     volume = {60},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/}
}
TY  - JOUR
AU  - O. A. Kuvshinov
TI  - About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 34
EP  - 57
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/
LA  - ru
ID  - IIMI_2022_60_a2
ER  - 
%0 Journal Article
%A O. A. Kuvshinov
%T About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 34-57
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/
%G ru
%F IIMI_2022_60_a2
O. A. Kuvshinov. About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 34-57. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a2/

[1] Ushakov V. N., Uspenskii A. A., Fomin A. N., $\alpha$-sets and their properties, Deposited in VINITI 02.04.2004, No 543-B2004, IMM UB RAS, Yekaterinburg, 2004, 62 pp. (in Russian)

[2] Ivanov G. E., Weak convex sets and functions: theory and applications, Fizmatlit, M., 2006

[3] Michael E., “Paraconvex sets”, Mathematica Scandinavica, 7:2 (1959), 312–315 | DOI | MR

[4] Ushakov V. N., Uspenskii A. A., “Theorems on the separability of $\alpha$-sets in Euclidean space”, Proceedings of the Steklov Institute of Mathematics, 299, 2017, 231–245 | DOI | DOI | MR

[5] Ushakov V. N., Uspenskii A. A., “$\alpha$-sets in finite dimensional Eulidean spaes and their properties”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 95–120 (in Russian) | DOI | MR | Zbl

[6] Ushakov V. N., Uspenskii A. A., Ershov A. A., “Alpha sets in finite-dimensional Euclidean spaces and their properties”, Constructive Nonsmooth Analysis and Related Topics, CNSA, dedicated to the memory of V. F. Demyanov, 2017 | DOI | MR

[7] Ushakov V. N., Uspenskii A. A., Ershov A. A., “$\alpha$-sets in finite-dimensional Euclidean spaces and their applications on control theory”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 261–272 (in Russian) | DOI | MR

[8] Ushakov V. N., Ershov A. A., Pershakov M. V., “Counterexamples in the theory of $\alpha$-sets”, Mathematical optimization theory and operations research, Springer, Cham, 2019, 329–340 | DOI | MR

[9] Ershov A. A., Kuvshinov O. A., “On properties of intersection of $\alpha$-sets”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 55 (2020), 79–92 (in Russian) | DOI | MR | Zbl

[10] Ershov A. A., Pershakov M. V., “On matching up the alpha-sets with other generalizations of convex sets”, VI Information school of a young scientist, Central Scientific Library, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2018, 143–150 (in Russian) | DOI

[11] Ushakov V. N., Ershov A. A., “Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets”, Doklady Mathematics, 102 (2020), 532–537 | DOI | DOI | MR | MR | Zbl

[12] Ushakov V. N., Ershov A. A., Matviychuk A. R., “On estimating the degree of nonconvexity of reachable sets of control systems”, Proceedings of the Steklov Institute of Mathematics, 315 (2021), 247–256 | DOI | DOI | MR | Zbl

[13] Leichtweiß K. Von, Konvexe Mengen, Springer, Berlin, 1980 | MR | MR | Zbl