Approximate calculation of reachable sets for linear control systems with different control constraints
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 16-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of approximate construction of reachability sets for a linear control system, when the control action is constrained simultaneously by geometric and several integral constraints. A variant of the transition from a continuous to a discrete system is proposed by uniformly dividing the time interval and replacing the controls at the step of dividing them with their mean values. The convergence of the reachability set of the approximating system to the reachability set of the original system in the Hausdorff metric is proved as the discretization step tends to zero, and an estimate is obtained for the rate of convergence. An algorithm for constructing the boundary of reachable sets based on solving a family of conic programming problems is proposed. Numerical simulation has been carried out.
Keywords: controlled system, reachable set, double constraints, integral constraints, geometric constraints, discrete approximation, Hausdorff metric.
@article{IIMI_2022_60_a1,
     author = {I. V. Zykov},
     title = {Approximate calculation of reachable sets for linear control systems with different control constraints},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {16--33},
     publisher = {mathdoc},
     volume = {60},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/}
}
TY  - JOUR
AU  - I. V. Zykov
TI  - Approximate calculation of reachable sets for linear control systems with different control constraints
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 16
EP  - 33
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/
LA  - ru
ID  - IIMI_2022_60_a1
ER  - 
%0 Journal Article
%A I. V. Zykov
%T Approximate calculation of reachable sets for linear control systems with different control constraints
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 16-33
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/
%G ru
%F IIMI_2022_60_a1
I. V. Zykov. Approximate calculation of reachable sets for linear control systems with different control constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 16-33. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/

[1] Blagodatskikh V. I., Introduction to optimal control, Vysshaya Shkola, M., 2001

[2] Dar'in A. N., Kurzhanskii A. B., “Nonlinear control synthesis under two types of constraints”, Differential Equations, 37:11 (2001), 1549–1558 | DOI | MR | Zbl

[3] Zykov I. V., “On external estimates of reachable sets of control systems with integral constraints”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 61–72 (in Russian) | DOI | Zbl

[4] Krasovskii N. N., Theory of motion control, Nauka, M., 1968

[5] Kurzhanskii A. B., Control and observation in conditions of uncertainty, Fizmatlit, M., 1977

[6] Lotov A. V., “Numerical method of constructing attainability sets for a linear control system”, USSR Computational Mathematics and Mathematical Physics, 12:3 (1972), 279–283 | DOI | MR

[7] Maksimov V. P., “On internal estimates of reachable sets for continuous-discrete systems with discrete memory”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 3, 2021, 141–151 (in Russian) | DOI

[8] Mordukhovich B. Sh., Approximation methods in optimization and control problems, Nauka, M., 1988 | MR

[9] Nikol'skii M. S., “Linear controlled objects with state constraints. Approximate calculation of reachable sets”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 2, 2021, 162–168 (in Russian) | DOI | Zbl

[10] Patsko V. S., Fedotov A. A., “Analytic description of a reachable set for the Dubins car”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 1, 2020, 182–197 (in Russian) | DOI | MR

[11] Sirotin A. N., Formal'skii A. M., “Reachability and controllability of discrete-time systems under control actions bounded in magnitude and norm”, Automation and Remote Control, 64:12 (2003), 1844–1857 | DOI | MR | MR | Zbl

[12] Chernous'ko F. L., Estimation of the phase state of dynamical systems, Nauka, M., 1988

[13] Andersen E. D., Roos C., Terlaky T., “On implementing a primal-dual interior-point method for conic quadratic optimization”, Mathematical Programming. Ser. B, 95:2 (2003), 249–277 | DOI | MR | Zbl

[14] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | MR | Zbl

[15] Goberna M. A., López M. A., A comprehensive survey of linear semi-infinite optimization theory, Springer, Boston, 1998, 3–27 | DOI | MR

[16] Gusev M. I., Osipov I. O., “On convexity of small-time reachable sets of nonlinear control systems”, AIP Conference Proceedings, 2164:1 (2019), 060007 | DOI

[17] Gusev M. I., Zykov I. V., “An algorithm for computing reachable sets of control systems under isoperimetric constraints”, AIP Conference Proceedings, 2025:1 (2018), 100003 | DOI

[18] Huseyin N., Guseinov Kh. G., Ushakov V. N., “Approximate construction of the set of trajectories of the control system described by a Volterra integral equation”, Mathematische Nachrichten, 288:16 (2015), 1891–1899 | DOI | MR | Zbl

[19] Huseyin N., Huseyin A., “Compactness of the set of trajectories of the controllable system described by an affine integral equation”, Applied Mathematics and Computation, 219:16 (2013), 8416–8424 | DOI | MR | Zbl

[20] Kostousova E. K., “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques”, IFAC-PapersOnLine, 51:32 (2018), 245–250 | DOI

[21] Kurzhanski A. B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhäuser, Cham, 2014 | DOI | MR | Zbl

[22] Rasmussen M., Rieger J., Webster K. N., “Approximation of reachable sets using optimal control and support vector machines”, Journal of Computational and Applied Mathematics, 311 (2017), 68–83 | DOI | MR | Zbl

[23] Rousse P., dit Sandretto J. A., Chapoutot A., Garoche P.-L., “Guaranteed simulation of dynamical systems with integral constraints and application on delayed dynamical systems”, Cyber physical systems. Model-based design, Springer, Cham, 2020, 89–107 | DOI