Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2022_60_a1, author = {I. V. Zykov}, title = {Approximate calculation of reachable sets for linear control systems with different control constraints}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {16--33}, publisher = {mathdoc}, volume = {60}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/} }
TY - JOUR AU - I. V. Zykov TI - Approximate calculation of reachable sets for linear control systems with different control constraints JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2022 SP - 16 EP - 33 VL - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/ LA - ru ID - IIMI_2022_60_a1 ER -
%0 Journal Article %A I. V. Zykov %T Approximate calculation of reachable sets for linear control systems with different control constraints %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2022 %P 16-33 %V 60 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/ %G ru %F IIMI_2022_60_a1
I. V. Zykov. Approximate calculation of reachable sets for linear control systems with different control constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 16-33. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a1/
[1] Blagodatskikh V. I., Introduction to optimal control, Vysshaya Shkola, M., 2001
[2] Dar'in A. N., Kurzhanskii A. B., “Nonlinear control synthesis under two types of constraints”, Differential Equations, 37:11 (2001), 1549–1558 | DOI | MR | Zbl
[3] Zykov I. V., “On external estimates of reachable sets of control systems with integral constraints”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 61–72 (in Russian) | DOI | Zbl
[4] Krasovskii N. N., Theory of motion control, Nauka, M., 1968
[5] Kurzhanskii A. B., Control and observation in conditions of uncertainty, Fizmatlit, M., 1977
[6] Lotov A. V., “Numerical method of constructing attainability sets for a linear control system”, USSR Computational Mathematics and Mathematical Physics, 12:3 (1972), 279–283 | DOI | MR
[7] Maksimov V. P., “On internal estimates of reachable sets for continuous-discrete systems with discrete memory”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 3, 2021, 141–151 (in Russian) | DOI
[8] Mordukhovich B. Sh., Approximation methods in optimization and control problems, Nauka, M., 1988 | MR
[9] Nikol'skii M. S., “Linear controlled objects with state constraints. Approximate calculation of reachable sets”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 2, 2021, 162–168 (in Russian) | DOI | Zbl
[10] Patsko V. S., Fedotov A. A., “Analytic description of a reachable set for the Dubins car”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 1, 2020, 182–197 (in Russian) | DOI | MR
[11] Sirotin A. N., Formal'skii A. M., “Reachability and controllability of discrete-time systems under control actions bounded in magnitude and norm”, Automation and Remote Control, 64:12 (2003), 1844–1857 | DOI | MR | MR | Zbl
[12] Chernous'ko F. L., Estimation of the phase state of dynamical systems, Nauka, M., 1988
[13] Andersen E. D., Roos C., Terlaky T., “On implementing a primal-dual interior-point method for conic quadratic optimization”, Mathematical Programming. Ser. B, 95:2 (2003), 249–277 | DOI | MR | Zbl
[14] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | MR | Zbl
[15] Goberna M. A., López M. A., A comprehensive survey of linear semi-infinite optimization theory, Springer, Boston, 1998, 3–27 | DOI | MR
[16] Gusev M. I., Osipov I. O., “On convexity of small-time reachable sets of nonlinear control systems”, AIP Conference Proceedings, 2164:1 (2019), 060007 | DOI
[17] Gusev M. I., Zykov I. V., “An algorithm for computing reachable sets of control systems under isoperimetric constraints”, AIP Conference Proceedings, 2025:1 (2018), 100003 | DOI
[18] Huseyin N., Guseinov Kh. G., Ushakov V. N., “Approximate construction of the set of trajectories of the control system described by a Volterra integral equation”, Mathematische Nachrichten, 288:16 (2015), 1891–1899 | DOI | MR | Zbl
[19] Huseyin N., Huseyin A., “Compactness of the set of trajectories of the controllable system described by an affine integral equation”, Applied Mathematics and Computation, 219:16 (2013), 8416–8424 | DOI | MR | Zbl
[20] Kostousova E. K., “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques”, IFAC-PapersOnLine, 51:32 (2018), 245–250 | DOI
[21] Kurzhanski A. B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhäuser, Cham, 2014 | DOI | MR | Zbl
[22] Rasmussen M., Rieger J., Webster K. N., “Approximation of reachable sets using optimal control and support vector machines”, Journal of Computational and Applied Mathematics, 311 (2017), 68–83 | DOI | MR | Zbl
[23] Rousse P., dit Sandretto J. A., Chapoutot A., Garoche P.-L., “Guaranteed simulation of dynamical systems with integral constraints and application on delayed dynamical systems”, Cyber physical systems. Model-based design, Springer, Cham, 2020, 89–107 | DOI