Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2022_59_a6, author = {V. I. Sumin and M. I. Sumin}, title = {On regularization of the {Lagrange} principle in the optimization problems for linear distributed {Volterra} type systems with operator constraints}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {85--113}, publisher = {mathdoc}, volume = {59}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/} }
TY - JOUR AU - V. I. Sumin AU - M. I. Sumin TI - On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2022 SP - 85 EP - 113 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/ LA - ru ID - IIMI_2022_59_a6 ER -
%0 Journal Article %A V. I. Sumin %A M. I. Sumin %T On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2022 %P 85-113 %V 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/ %G ru %F IIMI_2022_59_a6
V. I. Sumin; M. I. Sumin. On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 85-113. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/
[1] Fursikov A. V., Optimal control of distributed systems. Theory and applications, AMS, 2000 | MR | Zbl
[2] Tr{ö}ltzsch F., Optimal control of partial differential equations, AMS, 2010 | DOI | MR
[3] Dieye M., Diop M. A., Ezzinbi Kh., “Necessary conditions of optimality for some stochastic integrodifferential equations of neutral type on Hilbert spaces”, Applied Mathematics and Optimization, 77 (2018), 343–375 | DOI | MR | Zbl
[4] Breitenbach T., Borzi A., “A sequential quadratic Hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals”, Journal of Dynamical and Control Systems, 25:3 (2019), 403–435 | DOI | MR | Zbl
[5] Breitenbach T., Borzi A., “On the SQH scheme to solve nonsmooth PDE optimal control problems”, Numerical Functional Analysis and Optimization, 40:13 (2019), 1489–1531 | DOI | MR | Zbl
[6] Casas E., Mateos M., R{ö}sch A., “Error estimates for semilinear parabolic control problems in the absence of Tikhonov term”, SIAM Journal on Control and Optimization, 57:4 (2019), 2515–2540 | DOI | MR | Zbl
[7] Aronna M. S., Bonnans J. F., Kr{ö}ner A., “Optimal control of PDEs in a complex space setting: application to the Schr{ö}dinger equation”, SIAM Journal on Control and Optimization, 57:2 (2019), 1390–1412 | DOI | MR | Zbl
[8] Betz L. M., “Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations”, SIAM Journal on Control and Optimization, 57:6 (2019), 4033–4062 | DOI | MR | Zbl
[9] Casas E., Tr{ö}ltzsch F. L. M. On optimal control problems with controls appearing nonlinearly in an elliptic state equation, SIAM Journal on Control and Optimization, 58:4 (2020), 1961–1983 | DOI | MR | Zbl
[10] Lin P., Yong J. L. M. Controlled singular Volterra integral equations and Pontryagin maximum principle, SIAM Journal on Control and Optimization, 58:1 (2020), 136–164 | DOI | MR | Zbl
[11] Zhang X., Li H., Liu Ch., “Optimal control problem for the Cahn–Hilliard/Allen–Cahn equation with state constraint”, Applied Mathematics and Optimization, 82:2 (2020), 721–754 | DOI | MR | Zbl
[12] Casas E., Kunisch K., “Optimal control of the two-dimensional evolutionary Navier–Stokes equations with measure valued controls”, SIAM Journal on Control and Optimization, 59:3 (2021), 2223–2246 | DOI | MR | Zbl
[13] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Computational Mathematics and Mathematical Physics, 47:4 (2007), 579–600 | DOI | MR | Zbl
[14] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1489–1509 | DOI | MR | Zbl
[15] Sumin M. I., “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 279–296 (in Russian) | DOI
[16] Sumin V. I., Sumin M. I., “Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 265–284 (in Russian) | DOI | MR | Zbl
[17] Sumin V. I., Sumin M. I., “Regularization of the classical optimality conditions in optimal control problems for linear distributed systems of Volterra type”, Computational Mathematics and Mathematical Physics, 62:1 (2022), 42–65 | DOI | DOI | MR | Zbl
[18] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Springer, New York, 1987 | DOI | MR | MR
[19] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, Halsted Press, New York, 1977 | MR
[20] Vasil'ev F. P., Optimization methods, Moscow Center for Continuous Mathematical Education, M., 2011
[21] Trenogin V. A., Functional analysis, Nauka, M., 1979 | MR
[22] Sumin M. I., “On the regularization of the classical optimality conditions in convex optimal control problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 252–269 (in Russian) | DOI
[23] Warga J., Optimal control of differential and functional equations, Academic Press, New York–London, 1972 | MR | Zbl
[24] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, Nizhny Novgorod University, Nizhny Novgorod, 1992
[25] Sumin V. I., Chernov A. V., “Operators in the spaces of measurable functions: the Volterra property and quasinilpotency”, Differential Equations, 34:10 (1998), 1403–1411 | MR | Zbl
[26] Gohberg I. C., Krein M. G., Theory and applications of Volterra operators in Hilbert space, AMS, 1970 | DOI | MR | Zbl
[27] Sumin V. I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, Sov. Math., Dokl., 39:2 (1989), 374–378 | MR | Zbl
[28] Sumin V. I., “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 25, no. 1, 2019, 262–278 (in Russian) | DOI
[29] Ioffe A. D., Tikhomirov V. M., Theory of extremal problems, Elsevier, 1979 | MR | MR
[30] Dmitruk A. V., Convex analysis. Elementary introductory course, MAKS Press, M., 2012
[31] J{ö}rgens K., “An asymptotic expansion in the theory of neutron transport”, Communications on Pure and Applied Mathematics, 11:2 (1958), 219–242 | DOI | MR