On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 85-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularization of the classical optimality conditions — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem subject to functional equality and inequality constraints is considered. The controlled system is described by a linear functional-operator equation of second kind of the general form in the space $L_2^m$. The main operator on the right-hand side of the equation is assumed to be quasi-nilpotent. The objective functional to be minimized is strongly convex. The derivation of the regularized classical optimality conditions is based on the use of the dual regularization method. The main purpose of the regularized Lagrange principle and regularized Pontryagin maximum principle is to stably generate minimizing approximate solutions in the sense of J. Warga. As an application of the results obtained for the general linear functional-operator equation of second kind, two examples of concrete optimal control problems related to a system of delay equations and to an integro-differential transport equation are discussed.
Keywords: convex optimal control, distributed system, functional-operator equation of Volterra type, operator constraint, ill-posedness, regularization, duality, minimizing approximate solution, regularizing operator, Lagrange principle, Pontryagin maximum principle.
@article{IIMI_2022_59_a6,
     author = {V. I. Sumin and M. I. Sumin},
     title = {On regularization of the {Lagrange} principle in the optimization problems for linear distributed {Volterra} type systems with operator constraints},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {85--113},
     publisher = {mathdoc},
     volume = {59},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/}
}
TY  - JOUR
AU  - V. I. Sumin
AU  - M. I. Sumin
TI  - On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 85
EP  - 113
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/
LA  - ru
ID  - IIMI_2022_59_a6
ER  - 
%0 Journal Article
%A V. I. Sumin
%A M. I. Sumin
%T On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 85-113
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/
%G ru
%F IIMI_2022_59_a6
V. I. Sumin; M. I. Sumin. On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 85-113. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a6/

[1] Fursikov A. V., Optimal control of distributed systems. Theory and applications, AMS, 2000 | MR | Zbl

[2] Tr{ö}ltzsch F., Optimal control of partial differential equations, AMS, 2010 | DOI | MR

[3] Dieye M., Diop M. A., Ezzinbi Kh., “Necessary conditions of optimality for some stochastic integrodifferential equations of neutral type on Hilbert spaces”, Applied Mathematics and Optimization, 77 (2018), 343–375 | DOI | MR | Zbl

[4] Breitenbach T., Borzi A., “A sequential quadratic Hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals”, Journal of Dynamical and Control Systems, 25:3 (2019), 403–435 | DOI | MR | Zbl

[5] Breitenbach T., Borzi A., “On the SQH scheme to solve nonsmooth PDE optimal control problems”, Numerical Functional Analysis and Optimization, 40:13 (2019), 1489–1531 | DOI | MR | Zbl

[6] Casas E., Mateos M., R{ö}sch A., “Error estimates for semilinear parabolic control problems in the absence of Tikhonov term”, SIAM Journal on Control and Optimization, 57:4 (2019), 2515–2540 | DOI | MR | Zbl

[7] Aronna M. S., Bonnans J. F., Kr{ö}ner A., “Optimal control of PDEs in a complex space setting: application to the Schr{ö}dinger equation”, SIAM Journal on Control and Optimization, 57:2 (2019), 1390–1412 | DOI | MR | Zbl

[8] Betz L. M., “Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations”, SIAM Journal on Control and Optimization, 57:6 (2019), 4033–4062 | DOI | MR | Zbl

[9] Casas E., Tr{ö}ltzsch F. L. M. On optimal control problems with controls appearing nonlinearly in an elliptic state equation, SIAM Journal on Control and Optimization, 58:4 (2020), 1961–1983 | DOI | MR | Zbl

[10] Lin P., Yong J. L. M. Controlled singular Volterra integral equations and Pontryagin maximum principle, SIAM Journal on Control and Optimization, 58:1 (2020), 136–164 | DOI | MR | Zbl

[11] Zhang X., Li H., Liu Ch., “Optimal control problem for the Cahn–Hilliard/Allen–Cahn equation with state constraint”, Applied Mathematics and Optimization, 82:2 (2020), 721–754 | DOI | MR | Zbl

[12] Casas E., Kunisch K., “Optimal control of the two-dimensional evolutionary Navier–Stokes equations with measure valued controls”, SIAM Journal on Control and Optimization, 59:3 (2021), 2223–2246 | DOI | MR | Zbl

[13] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Computational Mathematics and Mathematical Physics, 47:4 (2007), 579–600 | DOI | MR | Zbl

[14] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1489–1509 | DOI | MR | Zbl

[15] Sumin M. I., “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 279–296 (in Russian) | DOI

[16] Sumin V. I., Sumin M. I., “Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 265–284 (in Russian) | DOI | MR | Zbl

[17] Sumin V. I., Sumin M. I., “Regularization of the classical optimality conditions in optimal control problems for linear distributed systems of Volterra type”, Computational Mathematics and Mathematical Physics, 62:1 (2022), 42–65 | DOI | DOI | MR | Zbl

[18] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Springer, New York, 1987 | DOI | MR | MR

[19] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, Halsted Press, New York, 1977 | MR

[20] Vasil'ev F. P., Optimization methods, Moscow Center for Continuous Mathematical Education, M., 2011

[21] Trenogin V. A., Functional analysis, Nauka, M., 1979 | MR

[22] Sumin M. I., “On the regularization of the classical optimality conditions in convex optimal control problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 252–269 (in Russian) | DOI

[23] Warga J., Optimal control of differential and functional equations, Academic Press, New York–London, 1972 | MR | Zbl

[24] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, Nizhny Novgorod University, Nizhny Novgorod, 1992

[25] Sumin V. I., Chernov A. V., “Operators in the spaces of measurable functions: the Volterra property and quasinilpotency”, Differential Equations, 34:10 (1998), 1403–1411 | MR | Zbl

[26] Gohberg I. C., Krein M. G., Theory and applications of Volterra operators in Hilbert space, AMS, 1970 | DOI | MR | Zbl

[27] Sumin V. I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, Sov. Math., Dokl., 39:2 (1989), 374–378 | MR | Zbl

[28] Sumin V. I., “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 25, no. 1, 2019, 262–278 (in Russian) | DOI

[29] Ioffe A. D., Tikhomirov V. M., Theory of extremal problems, Elsevier, 1979 | MR | MR

[30] Dmitruk A. V., Convex analysis. Elementary introductory course, MAKS Press, M., 2012

[31] J{ö}rgens K., “An asymptotic expansion in the theory of neutron transport”, Communications on Pure and Applied Mathematics, 11:2 (1958), 219–242 | DOI | MR