On one simple pursuit problem of two rigidly coordinated evaders
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a finite-dimensional Euclidean space, the problem of pursuit by a group of pursuers of two evaders described by a system of the form $$ \dot z_{ij} = u_i - v,\quad u_i, v \in V $$ is considered. It is assumed that all evaders use the same control. The pursuers use counterstrategies based on information about the initial positions and control history of the evaders. The set of admissible controls $V$ is unit ball centered at zero, target sets are the origin. The goal of the pursuers' group is to capture at least one evader by two pursuers or to capture two evaders. In terms of initial positions and game parameters a sufficient condition for the capture is obtained. In the study, the method of resolving functions is used as a basic one, which allows obtaining sufficient conditions for the solvability of the approach problem in some guaranteed time.
Keywords: differential game, group pursuit, pursuer, evader.
@article{IIMI_2022_59_a4,
     author = {N. N. Petrov},
     title = {On one simple pursuit problem of two rigidly coordinated evaders},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {59},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a4/}
}
TY  - JOUR
AU  - N. N. Petrov
TI  - On one simple pursuit problem of two rigidly coordinated evaders
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 55
EP  - 66
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a4/
LA  - ru
ID  - IIMI_2022_59_a4
ER  - 
%0 Journal Article
%A N. N. Petrov
%T On one simple pursuit problem of two rigidly coordinated evaders
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 55-66
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a4/
%G ru
%F IIMI_2022_59_a4
N. N. Petrov. On one simple pursuit problem of two rigidly coordinated evaders. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 55-66. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a4/

[1] Isaacs R., Differential games, Wiley, New York, 1965 | MR | Zbl

[2] Pontryagin L. S., Selected scientific works, Nauka, M., 1988

[3] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974 | MR

[4] Friedman A., Differential games, Wiley Interscience, New York, 1971 | MR | Zbl

[5] Hájek O., Pursuit games, Academic Press, 1975 | MR

[6] Narmanov A. Ya., Shchelchkov K. A., “The evasion problem in a nonlinear differential game with discrete control”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 75–85 (in Russian) | DOI | MR | Zbl

[7] Averboukh Yu., “Stackelberg solution of first-order mean field game with a major player”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 3–12 | DOI | MR | Zbl

[8] Casini M., Criscuoli M., Garulli A., “A discrete-time pursuit–evasion game in convex polygonal environments”, Systems and Control Letters, 125 (2019), 22–28 | DOI | MR | Zbl

[9] Pshenichnyi B. N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 | DOI | MR | Zbl

[10] Chernous'ko F. L., “A problem of evasion from many pursuers”, Journal of Applied Mathematics and Mechanics, 40:1 (1976), 11–20 | DOI | Zbl

[11] Rikhsiev B. B., Differential games with simple mothion, Fan, Tashkent, 1989 | MR

[12] Chikrii A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[13] Grigorenko N. L., Mathematical methods of control a few dynamic processes, Moscow State University, M., 1990

[14] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[15] Kumkov S. S., Ménec S. L., Patsko V. S., “Zero-sum pursuit–evasion differential games with many objects: survey of publications”, Dynamic Games and Applications, 7:4 (2017), 609–633 | DOI | MR | Zbl

[16] Petrov N. N., Petrov N. Nikandr, “The “Cossack-robber” differential game”, Differentsial'nye Uravneniya, 19:8 (1983), 1366–1374 (in Russian) | MR | Zbl

[17] Prokopovich P. V., Chikrii A. A., “A linear evasion problem for interacting groups of objects”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 583–591 | DOI | MR | Zbl

[18] Bannikov A. S., “A nonstationary group pursuit problem”, Russian Mathematics, 53:5 (2009), 1–9 | DOI | MR | Zbl

[19] Alias I. A., Ibragimov G., Rakmanov A., “Evasion differential games of infinitely many evaders from infinitely many pursuers in Hilbert space”, Dynamic Games and Applications, 7:3 (2017), 347–359 | DOI | MR | Zbl

[20] Satimov N., Mamatov M. Sh., “On problems of pursuit and evasion away from meeting in differential games between the group of pursuers and evaders”, Doklady Akademii Nauk UzSSR, 1983, no. 4, 3–6 (in Russian) | Zbl

[21] Vagin D. A., Petrov N. N., “A problem of group pursuit with phase constraints”, Journal of Applied Mathematics and Mechanics, 66:2 (2002), 225–232 | DOI | MR | Zbl

[22] Machtakova A. I., “Persecution of rigidly coordinated evaders in a linear problem with fractional derivatives and a simple matrix”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 45–54 | DOI | MR | Zbl

[23] Petrov N. N., Solov'eva N. A., “Problem of pursuit of a group of coordinated evaders in linear recurrent differential games”, Journal of Computer and System Sciences International, 51:6 (2012), 770–778 | DOI | MR | Zbl

[24] Petrov N. N., Prokopenko V. A., “One problem of pursuit of a group of evader”, Differentsial'nye Uravneniya, 23:4 (1987), 725–726 (in Russian)

[25] Petrov N. N., Narmanov A. Ya., “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 193–198 (in Russian) | DOI | MR | Zbl

[26] Petrov N. N., Solov'eva N. A., “Multiple capture of given number of evaders in linear recurrent differential games”, Journal of Optimization Theory and Applications, 182:1 (2019), 417–429 | DOI | MR | Zbl

[27] Makkapati V. R., Tsiotras P., “Optimal evading strategies and task allocation in multi-player pursuit–evasion problems”, Dynamic Games and Applications, 9:4 (2019), 1168–1187 | DOI | MR | Zbl

[28] Qadir M. Z., Piao S., Jiang H., Souidi M. E. H., “A novel approach for multi-agent cooperative pursuit to capture grouped evaders”, Journal of Supercomputing, 76:5 (2020), 3416–3426 | DOI

[29] Liang L., Deng F., Peng Z., Li X., Zha W., “A differential game for cooperative target defense”, Automatica, 102 (2019), 58–71 | DOI | MR | Zbl

[30] Blagodatskikh A. I., “Problems of group pursuit with equal opportunities in a presence of defenders for an evader”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, no. 2(46), 13–20 (in Russian) | Zbl

[31] Grigorenko N. L., “Pursuit of two evaders by several controlled objects”, Doklady Akademii Nauk SSSR, 282:5 (1985), 1051–1054 | MR | Zbl

[32] Vinogradova M. N., “On the capture of two evaders in a non-stationary pursuit evasion problem with phase restritions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:1 (2015), 12–20 (in Russian) | DOI | Zbl

[33] Vinogradova M. N., Petrov N. N., Solov'eva N. A., “Capture of two cooperative evaders in linear recurrent differential games”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 19, no. 1, 2013, 41–48 (in Russian)

[34] Petrov N. N., “Controllability of autonomous systems”, Differentsial'nye Uravneniya, 4:4 (1968), 606–617 (in Russian) | Zbl

[35] Vagin D. A., Petrov N. N., “A problem of the pursuit of a group rigidly connected evaders”, Journal of Computer and Systems Sciences International, 40:5 (2001), 749–753 | MR | Zbl

[36] Petrov N. N., Solov'eva N. A., “A multiple capture of an evader in linear recursive differential games”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 23, no. 1, 2017, 212–218 (in Russian)