Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2022_59_a3, author = {M. Ibrahim and V. G. Pimenov}, title = {Numerical method for system of space-fractional equations of superdiffusion type with delay and {Neumann} boundary conditions}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {41--54}, publisher = {mathdoc}, volume = {59}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/} }
TY - JOUR AU - M. Ibrahim AU - V. G. Pimenov TI - Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2022 SP - 41 EP - 54 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/ LA - en ID - IIMI_2022_59_a3 ER -
%0 Journal Article %A M. Ibrahim %A V. G. Pimenov %T Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2022 %P 41-54 %V 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/ %G en %F IIMI_2022_59_a3
M. Ibrahim; V. G. Pimenov. Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 41-54. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/
[1] Volterra V., Le{ç}ons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931 | MR
[2] Kayan {Ş}., Merdan H., Yafia R., Goktepe S., “Bifurcation analysis of a modified tumor-immune system interaction model involving time delay”, Mathematical Modelling of Natural Phenomena, 12:5 (2017), 120–145 | DOI | MR | Zbl
[3] Pindza E., Owolabi K. M., “Fourier spectral method for higher order space fractional reaction–diffusion equations”, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112–128 | DOI | MR | Zbl
[4] Owolabi K. M., “High-dimensional spatial patterns in fractional reaction–diffusion systems arising in biology”, Chaos, Solitons and Fractals, 134 (2020), 109723 | DOI | MR | Zbl
[5] Tian W., Zhou H., Deng W., “A class of second order difference approximations for solving space fractional diffusion equations”, Mathematics of Computation, 84:294 (2015), 1703–1727 | DOI | MR | Zbl
[6] Jin X.-Q., Lin F.-R., Zhao Z., “Preconditioned iterative methods for two-dimensional space-fractional diffusion equations”, Communications in Computational Physics, 18:2 (2015), 469–488 | DOI | MR | Zbl
[7] Lin X.-L., Ng M. K., Sun H.-W., “Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equation with variable diffusion coefficients”, Journal of Scientific Computing, 75:2 (2018), 1102–1127 | DOI | MR | Zbl
[8] Lin X.-L., Ng M. K., “A fast solver multidimensional time-space fractional diffusion equation with variable coefficients”, Computers and Mathematics with Applications, 78:5 (2019), 1477–1489 | DOI | MR | Zbl
[9] Hendy A. S., Macías-Díaz J. E., “A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross–Pitaevskii equation”, International Journal of Applied Mathematics and Computer Science, 29:4 (2019), 713–723 | DOI | MR | Zbl
[10] Yue X., Shu S., Xu X., Bu W., Pan K., “Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations”, Computers and Mathematics with Applications, 78:11 (2019), 3471–3484 | DOI | MR | Zbl
[11] Du R., Alikhanov A. A., Sun Z.-Z., “Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations”, Computers and Mathematics with Applications, 79:10 (2020), 2952–2972 | DOI | MR | Zbl
[12] Zaky M. A., Machado J. T., “Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations”, Computers and Mathematics with Applications, 79:2 (2020), 476–488 | DOI | MR | Zbl
[13] Zaky M. A., Hendy A. S., Alikhanov A. A., Pimenov V. G., Numerical analysis of multi-term time-fractional nonlinear subdiffusion equations with time delay: What could possibly go wrong?, Communication in Nonlinear Science and Numerical Simulation, 96 (2021), 105672 | DOI | MR | Zbl
[14] Hendy A. S., Zaky M. A., De Staelen R. H., “A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay”, Applied Numerical Mathematics, 169 (2021), 108–121 | DOI | MR | Zbl
[15] Pimenov V. G., Difference methods for solving partial differential equations with heredity, Ural State University, Yekaterinburg, 2014
[16] Li C., Zeng F., Numerical methods for fractional calculus, CRC Press, Boca Raton, 2015 | MR | Zbl
[17] Tadjeran C., Meerschaert M. M., Scheffler H.-P., “A second-order accurate numerical approximation for the fractional diffusion equation”, Journal of Computational Physics, 213:1 (2006), 205–213 | DOI | MR | Zbl
[18] Kim A. V., Pimenov V. G., i-Smooth analysis and numerical methods for solving functional differential equations, Regular and Chaotic Dynamics, M.–Izhevsk, 2004
[19] Wilkinson J. H., The algebraic eigenvalue problem, Oxford, 1965