Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of two space-fractional superdiffusion equations with functional general delay and Neumann boundary conditions. For this problem, an analogue of the Crank–Nicolson method is constructed, based on the shifted Gr{ü}nwald–Letnikov formulas for approximating fractional Riesz derivatives with respect to a spatial variable and using piecewise linear interpolation of discrete prehistory with extrapolation by continuation to take into account the delay effect. With the help of the Gershgorin theorem, the solvability of the difference scheme and its stability are proved. The order of convergence of the method is obtained. The results of numerical experiments are presented.
Keywords: functional delay, Riesz derivatives, Gr{ü}nwald–Letnikov approximation, Crank–Nicholson method, order of convergence.
Mots-clés : superdiffusion equations, Neumann conditions
@article{IIMI_2022_59_a3,
     author = {M. Ibrahim and V. G. Pimenov},
     title = {Numerical method for system of space-fractional equations of superdiffusion type with delay and {Neumann} boundary conditions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {59},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/}
}
TY  - JOUR
AU  - M. Ibrahim
AU  - V. G. Pimenov
TI  - Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 41
EP  - 54
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/
LA  - en
ID  - IIMI_2022_59_a3
ER  - 
%0 Journal Article
%A M. Ibrahim
%A V. G. Pimenov
%T Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 41-54
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/
%G en
%F IIMI_2022_59_a3
M. Ibrahim; V. G. Pimenov. Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 41-54. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a3/

[1] Volterra V., Le{ç}ons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931 | MR

[2] Kayan {Ş}., Merdan H., Yafia R., Goktepe S., “Bifurcation analysis of a modified tumor-immune system interaction model involving time delay”, Mathematical Modelling of Natural Phenomena, 12:5 (2017), 120–145 | DOI | MR | Zbl

[3] Pindza E., Owolabi K. M., “Fourier spectral method for higher order space fractional reaction–diffusion equations”, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112–128 | DOI | MR | Zbl

[4] Owolabi K. M., “High-dimensional spatial patterns in fractional reaction–diffusion systems arising in biology”, Chaos, Solitons and Fractals, 134 (2020), 109723 | DOI | MR | Zbl

[5] Tian W., Zhou H., Deng W., “A class of second order difference approximations for solving space fractional diffusion equations”, Mathematics of Computation, 84:294 (2015), 1703–1727 | DOI | MR | Zbl

[6] Jin X.-Q., Lin F.-R., Zhao Z., “Preconditioned iterative methods for two-dimensional space-fractional diffusion equations”, Communications in Computational Physics, 18:2 (2015), 469–488 | DOI | MR | Zbl

[7] Lin X.-L., Ng M. K., Sun H.-W., “Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equation with variable diffusion coefficients”, Journal of Scientific Computing, 75:2 (2018), 1102–1127 | DOI | MR | Zbl

[8] Lin X.-L., Ng M. K., “A fast solver multidimensional time-space fractional diffusion equation with variable coefficients”, Computers and Mathematics with Applications, 78:5 (2019), 1477–1489 | DOI | MR | Zbl

[9] Hendy A. S., Macías-Díaz J. E., “A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross–Pitaevskii equation”, International Journal of Applied Mathematics and Computer Science, 29:4 (2019), 713–723 | DOI | MR | Zbl

[10] Yue X., Shu S., Xu X., Bu W., Pan K., “Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations”, Computers and Mathematics with Applications, 78:11 (2019), 3471–3484 | DOI | MR | Zbl

[11] Du R., Alikhanov A. A., Sun Z.-Z., “Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations”, Computers and Mathematics with Applications, 79:10 (2020), 2952–2972 | DOI | MR | Zbl

[12] Zaky M. A., Machado J. T., “Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations”, Computers and Mathematics with Applications, 79:2 (2020), 476–488 | DOI | MR | Zbl

[13] Zaky M. A., Hendy A. S., Alikhanov A. A., Pimenov V. G., Numerical analysis of multi-term time-fractional nonlinear subdiffusion equations with time delay: What could possibly go wrong?, Communication in Nonlinear Science and Numerical Simulation, 96 (2021), 105672 | DOI | MR | Zbl

[14] Hendy A. S., Zaky M. A., De Staelen R. H., “A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay”, Applied Numerical Mathematics, 169 (2021), 108–121 | DOI | MR | Zbl

[15] Pimenov V. G., Difference methods for solving partial differential equations with heredity, Ural State University, Yekaterinburg, 2014

[16] Li C., Zeng F., Numerical methods for fractional calculus, CRC Press, Boca Raton, 2015 | MR | Zbl

[17] Tadjeran C., Meerschaert M. M., Scheffler H.-P., “A second-order accurate numerical approximation for the fractional diffusion equation”, Journal of Computational Physics, 213:1 (2006), 205–213 | DOI | MR | Zbl

[18] Kim A. V., Pimenov V. G., i-Smooth analysis and numerical methods for solving functional differential equations, Regular and Chaotic Dynamics, M.–Izhevsk, 2004

[19] Wilkinson J. H., The algebraic eigenvalue problem, Oxford, 1965