The Savage principle and accounting for outcome in single-criterion nonlinear problem under uncertainty
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 25-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the middle of the last century the American mathematician and statistician professor of Michigan University Leonard Savage (1917–1971) and the well-known economist, professor of Zurich University (Switzerland) Jurg Niehans (1919–2007) independently from each other suggested the approach to decision-making in one-criterion problem under uncertainty (OPU), called the principle of minimax regret. This principle along with Wald principle of guaranteed result (maximin) is playing the most important role in guaranteed under uncertainty decision-making in OPU. The main role in the principle of minimax regret is carrying out the regret function, which determines the Niehans–Savage risk in OPU. Such risk has received the broad extension in practical problems during last years. In the present article we suggest one of possible approaches to finding decision in OPU from the position of a decision–maker, which simultaneously tries to increase the payoff (outcome) and to reduce the risk (i. e., “to kill two birds with one stone in one throw”). As an application, an explicit form of such a solution was immediately found for a linear-quadratic variant of the OPU of a fairly general form.
Keywords: outcome, risk, uncertainty, Pareto optimality, Wald principle, Savage principle.
@article{IIMI_2022_59_a2,
     author = {V. I. Zhukovskiy and L. V. Zhukovskaya and S. P. Samsonov and L. V. Smirnova},
     title = {The {Savage} principle and accounting for outcome in single-criterion nonlinear problem  under uncertainty},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {25--40},
     publisher = {mathdoc},
     volume = {59},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/}
}
TY  - JOUR
AU  - V. I. Zhukovskiy
AU  - L. V. Zhukovskaya
AU  - S. P. Samsonov
AU  - L. V. Smirnova
TI  - The Savage principle and accounting for outcome in single-criterion nonlinear problem  under uncertainty
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 25
EP  - 40
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/
LA  - ru
ID  - IIMI_2022_59_a2
ER  - 
%0 Journal Article
%A V. I. Zhukovskiy
%A L. V. Zhukovskaya
%A S. P. Samsonov
%A L. V. Smirnova
%T The Savage principle and accounting for outcome in single-criterion nonlinear problem  under uncertainty
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 25-40
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/
%G ru
%F IIMI_2022_59_a2
V. I. Zhukovskiy; L. V. Zhukovskaya; S. P. Samsonov; L. V. Smirnova. The Savage principle and accounting for outcome in single-criterion nonlinear problem  under uncertainty. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 25-40. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/

[1] Diev V. S., “Rationality and risk”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Filosofiya, 10:4 (2012), 14–20 (in Russian)

[2] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. I. Analog of a saddle-point”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 5:1 (2013), 27–44 (in Russian) | Zbl

[3] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. II. Analog of a maximin”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 5:2 (2013), 3–45 (in Russian) | MR | Zbl

[4] Zhukovskii V. I., Boldyrev M. V., Kirichenko M. M., “A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 13–32 (in Russian) | DOI | MR | Zbl

[5] Markowitz H., “Portfolio selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI | MR

[6] Mukhamedzyanova D. D., Sirazetdinov R. M., Ustinova L. N., Sirazetdinova E. R., “The risk management system standardization at innovative enterprises”, Ekonomika, Predprinimatel'stvo i Pravo, 11:12 (2021), 2871–2886 (in Russian) | DOI

[7] Zhukovskiy V. I., Zhukovskaya L. V., Risk in multi-criteria and conflict systems with uncertainty, URSS, M., 2017

[8] Wald A., “Contribution to the theory of statistical estimation and testing hypothesis”, The Annals of Mathematical Statistics, 10:4 (1939), 299–326 https://www.jstor.org/stable/2235609 | DOI

[9] Wald A., Statistical decision functions, Wiley, New York, 1950 | MR | Zbl

[10] Savage L. J., “The theory of statistical decision”, Journal of the American Statistical Association, 46:253 (1951), 55–67 | DOI | Zbl

[11] Niehans J., “Zur Preisbilding bei ungewissen Erwartungen”, Swiss Journal of Economics and Statistics, 84:5 (1948), 433–456 https://www.econbiz.de/Record/zur-preisbildung-bei-ungewissen-erwartungen-niehans-j

[12] Zhukovskii V. I., Salukvadze M. E., The vector-valued maximin, Academic Press, New York, 1994 | MR | Zbl

[13] Dmitruk A. V., Convex analysis. An elementary introductory course, MAKS Press, M., 2012

[14] Voevodin V. V., Kuznetsov Yu. A., Matrices and calculations, Nauka, M., 1984 | MR

[15] Salukvadze M. E., Zhukovskiy V. I., The Berge equilibrium: a game theoretic framework for the Golden Rule of ethics, Birkh{ä}user, Cham, 2020 | DOI | MR | Zbl

[16] Zhukovskiy V. I., Salukvadze M. E., The Golden Rule of ethics, CRC Press, London, 2021 | DOI | MR | Zbl

[17] Zhukovskiy V. I., Chikrii A. A., Soldatova N. G., “Existence of Berge equilibrium in conflicts under uncertainty”, Automation and Remote Control, 77:4 (2016), 640–655 | DOI | MR | Zbl

[18] Petrosjan L. A., Zenkevich N. A., “Conditions for sustainable cooperation”, Automation and Remote Control, 76:10 (2015), 1894–1904 | DOI | MR

[19] Zhukovskiy V. I., Zhukovskaya L. V., Kudryavtsev K. N., Larbani M., “Strong coalitional equilibria in games under uncertainty”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:2 (2020), 189–207 | DOI | MR | Zbl

[20] Petrosian O., Barabanov A., “Looking forward approach in cooperative differential games with uncertain stochastic dynamics”, Journal of Optimization Theory and Applications, 172:1 (2017), 328–347 | DOI | MR | Zbl

[21] Petrosian O., Tur A., Wang Z., Gao H., “Cooperative differential games with continuous updating using Hamilton–Jacobi–Bellman equation”, Optimization Methods and Software, 2020, 1–29 | DOI | MR

[22] Ougolnitsky G. A., Usov A. B., “Dynamic hierarchical two-player games in open-loop strategies and their applications”, Automation and Remote Control, 76:11 (2015), 2056–2069 | DOI | MR

[23] Gorelov M. A., “Logic in the study of hierarchical games under uncertainty”, Automation and Remote Control, 78:11 (2017), 2051–2061 | DOI | MR | Zbl

[24] Gorelov M. A., “Risk management in hierarchical games with random factors”, Automation and Remote Control, 80:7 (2019), 1265–1278 | DOI | MR | Zbl