Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2022_59_a2, author = {V. I. Zhukovskiy and L. V. Zhukovskaya and S. P. Samsonov and L. V. Smirnova}, title = {The {Savage} principle and accounting for outcome in single-criterion nonlinear problem under uncertainty}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {25--40}, publisher = {mathdoc}, volume = {59}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/} }
TY - JOUR AU - V. I. Zhukovskiy AU - L. V. Zhukovskaya AU - S. P. Samsonov AU - L. V. Smirnova TI - The Savage principle and accounting for outcome in single-criterion nonlinear problem under uncertainty JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2022 SP - 25 EP - 40 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/ LA - ru ID - IIMI_2022_59_a2 ER -
%0 Journal Article %A V. I. Zhukovskiy %A L. V. Zhukovskaya %A S. P. Samsonov %A L. V. Smirnova %T The Savage principle and accounting for outcome in single-criterion nonlinear problem under uncertainty %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2022 %P 25-40 %V 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/ %G ru %F IIMI_2022_59_a2
V. I. Zhukovskiy; L. V. Zhukovskaya; S. P. Samsonov; L. V. Smirnova. The Savage principle and accounting for outcome in single-criterion nonlinear problem under uncertainty. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 25-40. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a2/
[1] Diev V. S., “Rationality and risk”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Filosofiya, 10:4 (2012), 14–20 (in Russian)
[2] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. I. Analog of a saddle-point”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 5:1 (2013), 27–44 (in Russian) | Zbl
[3] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. II. Analog of a maximin”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 5:2 (2013), 3–45 (in Russian) | MR | Zbl
[4] Zhukovskii V. I., Boldyrev M. V., Kirichenko M. M., “A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 13–32 (in Russian) | DOI | MR | Zbl
[5] Markowitz H., “Portfolio selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI | MR
[6] Mukhamedzyanova D. D., Sirazetdinov R. M., Ustinova L. N., Sirazetdinova E. R., “The risk management system standardization at innovative enterprises”, Ekonomika, Predprinimatel'stvo i Pravo, 11:12 (2021), 2871–2886 (in Russian) | DOI
[7] Zhukovskiy V. I., Zhukovskaya L. V., Risk in multi-criteria and conflict systems with uncertainty, URSS, M., 2017
[8] Wald A., “Contribution to the theory of statistical estimation and testing hypothesis”, The Annals of Mathematical Statistics, 10:4 (1939), 299–326 https://www.jstor.org/stable/2235609 | DOI
[9] Wald A., Statistical decision functions, Wiley, New York, 1950 | MR | Zbl
[10] Savage L. J., “The theory of statistical decision”, Journal of the American Statistical Association, 46:253 (1951), 55–67 | DOI | Zbl
[11] Niehans J., “Zur Preisbilding bei ungewissen Erwartungen”, Swiss Journal of Economics and Statistics, 84:5 (1948), 433–456 https://www.econbiz.de/Record/zur-preisbildung-bei-ungewissen-erwartungen-niehans-j
[12] Zhukovskii V. I., Salukvadze M. E., The vector-valued maximin, Academic Press, New York, 1994 | MR | Zbl
[13] Dmitruk A. V., Convex analysis. An elementary introductory course, MAKS Press, M., 2012
[14] Voevodin V. V., Kuznetsov Yu. A., Matrices and calculations, Nauka, M., 1984 | MR
[15] Salukvadze M. E., Zhukovskiy V. I., The Berge equilibrium: a game theoretic framework for the Golden Rule of ethics, Birkh{ä}user, Cham, 2020 | DOI | MR | Zbl
[16] Zhukovskiy V. I., Salukvadze M. E., The Golden Rule of ethics, CRC Press, London, 2021 | DOI | MR | Zbl
[17] Zhukovskiy V. I., Chikrii A. A., Soldatova N. G., “Existence of Berge equilibrium in conflicts under uncertainty”, Automation and Remote Control, 77:4 (2016), 640–655 | DOI | MR | Zbl
[18] Petrosjan L. A., Zenkevich N. A., “Conditions for sustainable cooperation”, Automation and Remote Control, 76:10 (2015), 1894–1904 | DOI | MR
[19] Zhukovskiy V. I., Zhukovskaya L. V., Kudryavtsev K. N., Larbani M., “Strong coalitional equilibria in games under uncertainty”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:2 (2020), 189–207 | DOI | MR | Zbl
[20] Petrosian O., Barabanov A., “Looking forward approach in cooperative differential games with uncertain stochastic dynamics”, Journal of Optimization Theory and Applications, 172:1 (2017), 328–347 | DOI | MR | Zbl
[21] Petrosian O., Tur A., Wang Z., Gao H., “Cooperative differential games with continuous updating using Hamilton–Jacobi–Bellman equation”, Optimization Methods and Software, 2020, 1–29 | DOI | MR
[22] Ougolnitsky G. A., Usov A. B., “Dynamic hierarchical two-player games in open-loop strategies and their applications”, Automation and Remote Control, 76:11 (2015), 2056–2069 | DOI | MR
[23] Gorelov M. A., “Logic in the study of hierarchical games under uncertainty”, Automation and Remote Control, 78:11 (2017), 2051–2061 | DOI | MR | Zbl
[24] Gorelov M. A., “Risk management in hierarchical games with random factors”, Automation and Remote Control, 80:7 (2019), 1265–1278 | DOI | MR | Zbl