Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 15-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $p(x)$-Laplacian equation with a Dirichlet boundary value condition \begin{equation*} \begin{cases} -\Delta_{p(x)}(u)+|u|^{p(x)-2}u= g(x,u,\nabla u), \in\Omega,\\ u=0, \in\partial\Omega, \end{cases} \end{equation*} Using the topological degree constructed by Berkovits, we prove, under appropriate assumptions, the existence of weak solutions for this equation.
Keywords: weak solution, Dirichlet boundary condition, variable exponent Sobolev space, topological degree, $p(x)$-Laplacian.
@article{IIMI_2022_59_a1,
     author = {M. Ait Hammou and E. H. Rami},
     title = {Existence of weak solutions for a $p(x)${-Laplacian} equation via topological degree},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {59},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a1/}
}
TY  - JOUR
AU  - M. Ait Hammou
AU  - E. H. Rami
TI  - Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 15
EP  - 24
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a1/
LA  - en
ID  - IIMI_2022_59_a1
ER  - 
%0 Journal Article
%A M. Ait Hammou
%A E. H. Rami
%T Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 15-24
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a1/
%G en
%F IIMI_2022_59_a1
M. Ait Hammou; E. H. Rami. Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 15-24. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a1/

[1] Ait Hammou M., Azroul E., “Nonlinear elliptic problems in weighted variable exponent Sobolev spaces by topological degree”, Proyecciones, 38:4 (2019), 733–751 | DOI | MR | Zbl

[2] Ait Hammou M., Azroul E., “Nonlinear elliptic boundary value problems by topological degree”, Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications, Springer, Cham, 2020, 1–13 | DOI | MR | Zbl

[3] Ait Hammou M., Azroul E., Lahmi B., “Existence of solutions for $p(x)$-Laplacian Dirichlet problem by topological degree”, Bulletin of the Transilvania University of Bra\c{s }ov. Ser. III: Mathematics, Informatics, Physic, 11(60):2 (2018), 29–38 | MR | Zbl

[4] Allaoui M., “Continuous spectrum of Steklov nonhomogeneous elliptic problem”, Opuscula Mathematica, 35:6 (2015), 853–866 | DOI | MR | Zbl

[5] Alsaedi R., “Perturbed subcritical Dirichlet problems with variable exponents”, Electronic Journal of Differential Equations, 295 (2016), 1–12 | MR

[6] Afrouzi G. A., Hadjian A., Heidarkhani S., “Steklov problrms involving the $p(x)$-Laplacian”, Electronic Journal of Differential Equations, 134 (2014), 1–11 | MR

[7] Antontsev S. N., Rodrigues J. F., “On stationary thermo-rheological viscous flows”, Annali dell' Università di Ferrara. Sez. VII. Scienze Matematiche, 52 (2006), 19–36 | DOI | MR | Zbl

[8] Berkovits J., “Extension of the Leray–Schauder degree for abstract Hammerstein type mappings”, Journal of Differential Equations, 234:1 (2007), 289–310 | DOI | MR | Zbl

[9] Chen Y., Levine S., Rao R., “Variable exponent, linear growth functionals in image restoration”, SIAM Journal of Applied Mathematics, 66:4 (2006), 1383–1406 | DOI | MR | Zbl

[10] Deng S.-G., “Positive solutions for Robin problem involving the $p(x)$-Laplacian”, Journal of Mathematical Analysis and Applications, 360:2 (2009), 548–560 | DOI | MR | Zbl

[11] Diening L., Harjulehto P., H{ä}st{ö} P., Ruzicka M., Lebesgue and Sobolev spaces with variable exponents, Springer, Berlin, 2011 | DOI | MR | Zbl

[12] Fan X., Han X., “Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^N$”, Nonlinear Analysis: Theory, Methods and Applications, 59:1–2 (2004), 173–188 | DOI | MR | Zbl

[13] Fan X.-L., Zhang Q.-H., “Existence of solutions for $p(x)$-Laplacian Dirichlet problem”, Nonlinear Analysis: Theory, Methods and Applications, 52:8 (2003), 1843–1852 | DOI | MR | Zbl

[14] Fan X., Zhao D., “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, Journal of Mathematical Analysis and Applications, 263:2 (2001), 424–446 | DOI | MR | Zbl

[15] Ge G., Lv D.-J., “Superlinear elliptic equations with variable exponent via perturbation method”, Acta Applicandae Mathematicae, 166 (2020), 85–109 | DOI | MR | Zbl

[16] Iliaş P. S., “Dirichlet problem with $p(x)$-Laplacian”, Math. Reports, 10(60):1 (2008), 43–56 | MR | Zbl

[17] Kováčik O., Rákosník J., “On spaces $L^{p(x)}$ and $W^{1,p(x)}$”, Czechoslovak Mathematical Journal, 41 (1991), 592–618 | DOI | MR | Zbl

[18] Liang Y., Wu X., Zhang Q., Zhao C., “Multiple solutions of a $p(x)$-Laplacian equation involving critical nonlinearites”, Taiwanese Journal of Mathematics, 17:6 (2013), 2055–2082 | DOI | MR | Zbl

[19] Marcos A., Abdou A., “Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight”, Boundary Value Problems, 2019, 171 | DOI | MR

[20] Nhan L. C., Chuong Q. V., Truong L. X., “Potential well method for $p(x)$-Laplacian equations with variable exponent sources”, Nonlinear Analysis: Real World Applications, 56 (2020) | DOI | MR | Zbl

[21] R{ů}žička M., Electrorheological fluids: modeling and mathematical theory, Springer, Berlin, 2000 | DOI | MR | Zbl

[22] Stanway R., Sproston J. L., El-Wahed A. K., “Applications of electro-rheological fluids in vibration control: a survey”, Smart Materials and Structures, 5:4 (1996), 464–482 | DOI

[23] Wang B.-S., Hou G.-L., Ge B., “Existence and uniqueness of solutions for the $p(x)$-Laplacian equation with convection term”, Mathematics, 8:10 (2020), 1768 | DOI | MR

[24] Xie W., Chen H., “Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^N$”, Mathematische Nachrichten, 291:16 (2018), 2476–2488 | DOI | MR | Zbl

[25] Fan X., Zhang Q., Zhao D., “Eigenvalues of $p(x)$-Laplacian Dirichlet problem”, Journal of Mathematical Analysis and Applications, 302:2 (2005), 306–317 | DOI | MR | Zbl

[26] Zeidler E., Nonlinear functional analysis and its applications, v. II/B, Nonlinear monotone operators, Springer, New York, 1985 | DOI | MR | Zbl

[27] Zhikov V. V., “Averaging of functionals of the calculus of variations and elasticity theory”, Mathematics of the USSR — Izvestiya, 29:1 (1987), 33–66 | DOI | MR | Zbl