On the construction of resolving control in the problem of getting close at a fixed time moment
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 73-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of getting close of a controlled system with a compact space in a finite-dimensional Euclidean space at a fixed time is studied. A method of constructing a solution to the problem is proposed which is based on the ideology of the maximum shift of the motion of the controlled system by the solvability set of the getting close problem.
Keywords: control, controlled system, getting close problem, reachable set, integral funnel, dual controlled system.
@article{IIMI_2021_58_a4,
     author = {V. N. Ushakov and A. V. Ushakov and O. A. Kuvshinov},
     title = {On the construction of resolving control in the problem of getting close at a fixed time moment},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {73--93},
     publisher = {mathdoc},
     volume = {58},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_58_a4/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. V. Ushakov
AU  - O. A. Kuvshinov
TI  - On the construction of resolving control in the problem of getting close at a fixed time moment
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 73
EP  - 93
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_58_a4/
LA  - ru
ID  - IIMI_2021_58_a4
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. V. Ushakov
%A O. A. Kuvshinov
%T On the construction of resolving control in the problem of getting close at a fixed time moment
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 73-93
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_58_a4/
%G ru
%F IIMI_2021_58_a4
V. N. Ushakov; A. V. Ushakov; O. A. Kuvshinov. On the construction of resolving control in the problem of getting close at a fixed time moment. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 73-93. http://geodesic.mathdoc.fr/item/IIMI_2021_58_a4/

[1] Krasovskii N. N., Control of a dynamical system, Nauka, M., 1985

[2] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988, 517 pp. | Zbl

[3] Kurzhanski A. B., Selected works, Moscow State University, M., 1977

[4] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkh{ä}user, Boston, 1996

[5] Kryazhimskii A. V., Osipov Yu. S., “On an algorithmic criterion of the solvability of game problems for linear controlled systems”, Proceedings of the Steklov Institute of Mathematics, 2000, suppl. 1, 154–162 | Zbl

[6] Chernous'ko F. L., Evaluation of phase state of dynamical systems, Nauka, M., 1988

[7] Nikol'skii M. S., “Approximation of the feasibility set for a differential inclusion”, Vestnik Moskov. Univ. Ser. XV. Vychisl. Mat. Kibernet., 1987, no. 4, 31–34

[8] Gusev M. I., “Estimates of reachable sets of multidimensional control systems with nonlinear interconnections”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 134–146 | DOI | Zbl

[9] Filippova T. F., “Differential equations for ellipsoidal estimates for reachable sets of a nonlinear dynamical control system”, Proceedings of the Steklov Institute of Mathematics, 271, suppl. 1 (2010), 75–84 | DOI | Zbl

[10] Anan'evskii I. M., “Control of a nonlinear vibratory system of the fourth order with unknown parameters”, Automation and Remote Control, 62:3 (2001), 343–355 | DOI

[11] Anan'evskii I. M., “Control synthesis for linear systems by methods of stability theory of motion”, Differential Equations, 39:1 (2003), 1–10 | DOI

[12] Ushakov V. N., Matviichuk A. R., Parshikov G. V., “A method for constructing a resolving control in an approach problem based on attraction to the feasibility set”, Proceedings of the Steklov Institute of Mathematics, 284, suppl. 1 (2014), 135–144 | DOI

[13] Matviychuk A. R., Ukhobotov V. I., Ushakov A. V., Ushakov V. N., “The approach problem of a nonlinear controlled system in a finite time interval”, Journal of Applied Mathematics and Mechanics, 81:2 (2017), 114–128 | DOI | Zbl

[14] Ershov A. A., Ushakov V. N., “An approach problem for a control system with an unknown parameter”, Sbornik: Mathematics, 208:9 (2017), 1312–1352 | DOI | DOI | Zbl

[15] Polyak B. T., Khlebnikov M. V., Shcherbakov P. S., Control of linear systems subjected to exogenous disturbances: the linear matrix inequality technique, Lenand, M., 2014

[16] Beznos A. V., Grishin A. A., Lenskii A. V., Okhotsimskii D. E., Formal'skii A. M., “Pendulum control with the handwheel”, Spetspraktikum po teoreticheskoi i prikladnoi mekhanike, Moscow State University, M., 2019, 94–118

[17] Ushakov V. N., Khripunov A. P., “The construction of approximate integral funnels of differential inclusions”, Computational Mathematics and Mathematical Physics, 34:7 (1994), 833–842 | Zbl

[18] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “On approximations of attainability sets of control systems”, Prikladnaya Matematika i Mekhanika, 62:2 (1998), 179–187