On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 18-47

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\sum f_j\delta _{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied. (1) The magnetic potential $A\colon{\mathbb{R}}^n\to {\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\mathrm {loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\mathbb{R}}^n;{\mathbb{R}}^n)\cap H^q_{\mathrm {loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-2$. (2) The function $V\colon{\mathbb{R}}^n\to \mathbb{R} $ belongs to Morrey space ${\mathfrak L}^{2,p}$, $p\in \big( \frac {n-1}2, \frac n2\big] $, of periodic functions (with a given period lattice), and $$ \lim\limits_{\tau\to+0} \sup\limits_{0\leqslant\tau}\sup\limits_{x\in{\mathbb{R}}^n}r^2\bigg(\big(v(B^n_r)\big)^{-1}\int_{B^n_r(x)}|{\mathcal{V}}(y)|^p dy\bigg)^{1/p}\leqslant C, $$ where $B^n_r(x)$ is a closed ball of radius $r>0$ centered at a point $x\in{\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$. (3) $\delta_{S_j}$ are $\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\in L^p_{\mathrm {loc}}(S_j)$, $j=1,\dots ,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\{x_0+te\colon t\in\mathbb{R}\}$, $x_0\in{\mathbb{R}}^n$. Then we can choose the number $p>\frac {3n}2-3$, $n\geqslant 4$.
Keywords: absolute continuity of the spectrum, periodic Schrödinger operator.
@article{IIMI_2021_58_a1,
     author = {L. I. Danilov},
     title = {On the spectrum of a multidimensional periodic magnetic {Shr\"{o}dinger} operator with a singular electric potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {18--47},
     publisher = {mathdoc},
     volume = {58},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 18
EP  - 47
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/
LA  - ru
ID  - IIMI_2021_58_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 18-47
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/
%G ru
%F IIMI_2021_58_a1
L. I. Danilov. On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 18-47. http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/