Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_58_a1, author = {L. I. Danilov}, title = {On the spectrum of a multidimensional periodic magnetic {Shr\"{o}dinger} operator with a singular electric potential}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {18--47}, publisher = {mathdoc}, volume = {58}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/} }
TY - JOUR AU - L. I. Danilov TI - On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 18 EP - 47 VL - 58 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/ LA - ru ID - IIMI_2021_58_a1 ER -
%0 Journal Article %A L. I. Danilov %T On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 18-47 %V 58 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/ %G ru %F IIMI_2021_58_a1
L. I. Danilov. On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 18-47. http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/
[1] Reed M., Simon B., Methods of modern mathematical physics, v. 2, Fourier analysis, self-adjointness, Academic Press, New York, 1975 | Zbl
[2] Shen Z., “The periodic Schr{ö}dinger operators with potentials in the Morrey class”, Journal of Functional Analysis, 193:2 (2002), 314–345 | DOI | Zbl
[3] Danilov L. I., “On the spectrum of a periodic Schr{ö}dinger operator with potential in the Morrey space”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 3, 25–47 (in Russian) | DOI | Zbl
[4] Danilov L. I., “Spectrum of the periodic Dirac operator”, Theoretical and Mathematical Physics, 124:1 (2000), 859–871 | DOI | DOI | Zbl
[5] Birman M. Sh., Suslina T. A., “A periodic magnetic Hamiltonian with a variable metric: The problem of absolute continuity”, St. Petersburg Mathematical Journal, 11:2 (2000), 203–232 | Zbl
[6] Kuchment P., Levendorski{î} S., “On the structure of spectra of periodic elliptic operators”, Transactions of the American Mathematical Society, 354:2 (2002), 537–569 | DOI | Zbl
[7] Kuchment P., “An overview of periodic elliptic operators”, Bulletin of the American Mathematical Society, 53:3 (2016), 343–414 | DOI | Zbl
[8] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Communications in Mathematical Physics, 33 (1973), 335–343 | DOI
[9] Birman M. Sh., Suslina T. A., “Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential”, St. Petersburg Mathematical Journal, 10:4 (1999), 579–601 | Zbl
[10] Shterenberg R. G., “Absulute continuity of a two-dimensional magnetic periodic Schr{ö}dinger operator with potentials of type of measure derivative”, Journal of Mathematical Sciences, 115:6 (2003), 2862–2882 | DOI | Zbl
[11] Shterenberg R. G., “Absolute continuity of the spectrum of two-dimensional periodic Schr{ö}dinger operator with positive electric potential”, St. Petersburg Mathematical Journal, 13:4 (2002), 659–683 | Zbl
[12] Danilov L. I., “On the spectra of two-dimensional periodic Schr{ö}dinger and Dirac operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2002, no. 3(26), 3–98 (in Russian)
[13] Danilov L. I., “The spectrum of the two-dimensional periodic Schr{ö}dinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | DOI | Zbl
[14] Shterenberg R. G., “Absolute continuity of spectra of two-dimensional periodic Schr{ö}dinger operators with strongly subordinate magnetic potential”, Journal of Mathematical Sciences, 129:4 (2005), 4087–4109 | DOI | Zbl
[15] Danilov L. I., “On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schr{ö}dinger operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, no. 1(29), 49–84 (in Russian)
[16] Sobolev A. V., “Absolute continuity of the periodic magnetic Schr{ö}dinger operator”, Inventiones mathematicae, 137:1 (1999), 85–112 | DOI | Zbl
[17] Danilov L. I., “Absolute continuity of the spectrum of a periodic Schr{ö}dinger operator”, Mathematical Notes, 73:1–2 (2003), 46–57 | DOI | DOI | Zbl
[18] Danilov L. I., “On absolute continuity of the spectrum of a periodic magnetic Schr{ö}dinger operator”, Journal of Physics A: Mathematical and Theoretical, 42:27 (2009), 275204 | DOI | Zbl
[19] Danilov L. I., “Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2008, no. 1, 61–96 (in Russian) | DOI
[20] Danilov L. I., On absolute continuity of the spectrum of a d-dimensional periodic magnetic Dirac operator, 2008, arXiv: 0805.0399v3 [math-ph]
[21] Shen Z., “On absolute continuity of the periodic Schr{ö}dinger operators”, International Mathematics Research Notices, 2001:1 (2001), 1–31 | DOI
[22] Danilov L. I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schr{ö}dinger operators”, Journal of Physics A: Mathematical and Theoretical, 43:21 (2010), 215201 | DOI | Zbl
[23] Suslina T. A., Shterenberg R. G., “Absolute continuity of the spectrum of the Schr{ö}dinger operator with the potential concentrated on a periodic system of hypersurfaces”, St. Petersburg Mathematical Journal, 13:5 (2002), 859–891 | Zbl
[24] Kachkovski{ĭ} I. V., “Stein–Tomas theorem for a torus and the periodic Schr{ö}dinger operator with singular potential”, St. Petersburg Mathematical Journal, 24:6 (2013), 939–948 | DOI | Zbl
[25] Kachkovskii I. V., Absence of eigenvalues in the spectrum of some Schr{ö}dinger operators with periodic coefficients, Abstract of Cand. Sci. (Phys.–Math.) Dissertation, St. Petersburg, 2013, 18 pp. (in Russian) | Zbl
[26] Kachkovski{ĭ} I., Filonov N., “Absolute continuity of the Schr{ö}dinger operator spectrum in a multidimensional cylinder”, St. Petersburg Mathematical Journal, 21:1 (2010), 95–109 | DOI | Zbl
[27] Kachkovskiy I., Filonov N., “Absolute continuity of the spectrum of the periodic Schr{ö}dinger operator in a layer and in a smooth cylinder”, Journal of Mathematical Sciences, 178:3 (2011), 274–281 | DOI | Zbl
[28] Kachkovskiy I. V., “Absence of eigenvalues for the periodic Schr{ö}dinger operator with singular potential in a rectangular cylinder”, Functional Analysis and Its Applications, 47:2 (2013), 104–112 | DOI | DOI | Zbl
[29] Kachkovskiy I. V., Filonov N. D., “Absolute continuity of the spectrum of the periodic Schr{ö}dinger operator in a cylinder with Robin boundary condition”, Functional Analysis and Its Applications, 54:2 (2020), 110–117 | DOI | DOI | Zbl
[30] Filonov N. D., Prokhorov A. O., “The Maxwell operator with periodic coefficients in a cylinder”, St. Petersburg Mathematical Journal, 29:6 (2018), 997–1006 | DOI | Zbl
[31] Frank R. L., Shterenberg R. G., “On the spectrum of partially periodic operators”, Operator Theory, Analysis and Mathematical Physics, Birkh{ä}user, Basel, 2007, 35–50 | DOI | Zbl
[32] Filonov N. D., “Absolute continuity of the spectrum of two-dimensional Schr{ö}dinger operator with partially periodic coefficients”, St. Petersburg Mathematical Journal, 29:2 (2018), 383–398 | DOI | Zbl
[33] Hoang Vu, Radosz M., “Absence of bound states for waveguides in two-dimensional periodic structures”, Journal of Mathematical Physics, 55:3 (2014), 033506 | DOI | Zbl
[34] Sobolev A. V., Walthoe J., “Absolute continuity in periodic waveguides”, Proceedings of the London Mathematical Society, 85:3 (2002), 717–741 | DOI | Zbl
[35] Cardone G., Nazarov S. A., Taskinen J., “Spectra of open waveguides in periodic media”, Journal of Functional Analysis, 269:8 (2015), 2328–2364 | DOI | Zbl
[36] Exner P., Kovařík H., Quantum waveguides, Springer, Berlin, 2015 | DOI | Zbl
[37] Korotyaev E., Saburova N., “Schr{ö}dinger operators on periodic discrete graphs”, Journal of Mathematical Analysis and Applications, 420:1 (2014), 576–611 | DOI | Zbl
[38] Korotyaev E., Saburova N., “Spectral estimates for Schr{ö}dinger operators on periodic discrete graphs”, St. Petersburg Mathematical Journal, 30:4 (2019), 667–698 | DOI | Zbl
[39] Exner P., Turek O., “High-energy asymptotics of the spectrum of a periodic square lattice quantum graphs”, Journal of Physics A: Mathematical and Theoretical, 43:47 (2010), 474024 | DOI | Zbl
[40] Gejler V. A., “The two-dimensional Schr{ö}dinger operator with a uniform magnetic field, and its perturbation by periodic zero-range potentials”, St. Petersburg Mathematical Journal, 3:3 (1992), 489–532 | Zbl
[41] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | Zbl
[42] Danilov L. I., “On the spectrum of a two-dimensional Schr{ö}dinger operator with a homogeneous magnetic field and a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 51 (2018), 3–41 (in Russian) | DOI | Zbl
[43] Danilov L. I., “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoretical and Mathematical Physics, 202:1 (2020), 41–57 | DOI | DOI | Zbl
[44] Danilov L. I., “On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L_{\mathrm{loc}}^p({\mathbb{R}}^2)$, $p>1$”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 55 (2020), 42–59 (in Russian) | DOI | Zbl
[45] Danilov L. I., “Absolute continuity of the spectrum of a periodic 3D magnetic Schr{ö}dinger operator with singular electric potential”, Mathematical Notes, 110:4 (2021), 497–510 | DOI | DOI | Zbl
[46] Danilov L. I., “Absolute continuity of the spectrum of a periodic Dirac operator”, Differential Equations, 36:2 (2000), 262–271 | DOI | Zbl
[47] Reed M., Simon B., Methods of modern mathematical physics, v. 1, Functional analysis, Academic Press, New York, 1972 | Zbl
[48] Danilov L. I., The spectrum of the Dirac operator with periodic potential. I, Deposited in VINITI 12.12.1991, No 4588-B91, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1991, 35 pp. (in Russian)
[49] Kato T., Perturbation theory for linear operators, Springer, Berlin, 1995 | DOI | Zbl
[50] Reed M., Simon B., Methods of modern mathematical physics, v. 4, Analysis of operators, Academic Press, New York, 1978 | Zbl
[51] Chandrasekharan K., Introduction to analytic number theory, Springer, Berlin, 1968 | Zbl