On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 18-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\sum f_j\delta _{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied. (1) The magnetic potential $A\colon{\mathbb{R}}^n\to {\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\mathrm {loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\mathbb{R}}^n;{\mathbb{R}}^n)\cap H^q_{\mathrm {loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-2$. (2) The function $V\colon{\mathbb{R}}^n\to \mathbb{R} $ belongs to Morrey space ${\mathfrak L}^{2,p}$, $p\in \big( \frac {n-1}2, \frac n2\big] $, of periodic functions (with a given period lattice), and $$ \lim\limits_{\tau\to+0} \sup\limits_{0\leqslant\tau}\sup\limits_{x\in{\mathbb{R}}^n}r^2\bigg(\big(v(B^n_r)\big)^{-1}\int_{B^n_r(x)}|{\mathcal{V}}(y)|^p dy\bigg)^{1/p}\leqslant C, $$ where $B^n_r(x)$ is a closed ball of radius $r>0$ centered at a point $x\in{\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$. (3) $\delta_{S_j}$ are $\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\in L^p_{\mathrm {loc}}(S_j)$, $j=1,\dots ,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\{x_0+te\colon t\in\mathbb{R}\}$, $x_0\in{\mathbb{R}}^n$. Then we can choose the number $p>\frac {3n}2-3$, $n\geqslant 4$.
Keywords: absolute continuity of the spectrum, periodic Schrödinger operator.
@article{IIMI_2021_58_a1,
     author = {L. I. Danilov},
     title = {On the spectrum of a multidimensional periodic magnetic {Shr\"{o}dinger} operator with a singular electric potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {18--47},
     publisher = {mathdoc},
     volume = {58},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 18
EP  - 47
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/
LA  - ru
ID  - IIMI_2021_58_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 18-47
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/
%G ru
%F IIMI_2021_58_a1
L. I. Danilov. On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 18-47. http://geodesic.mathdoc.fr/item/IIMI_2021_58_a1/

[1] Reed M., Simon B., Methods of modern mathematical physics, v. 2, Fourier analysis, self-adjointness, Academic Press, New York, 1975 | Zbl

[2] Shen Z., “The periodic Schr{ö}dinger operators with potentials in the Morrey class”, Journal of Functional Analysis, 193:2 (2002), 314–345 | DOI | Zbl

[3] Danilov L. I., “On the spectrum of a periodic Schr{ö}dinger operator with potential in the Morrey space”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 3, 25–47 (in Russian) | DOI | Zbl

[4] Danilov L. I., “Spectrum of the periodic Dirac operator”, Theoretical and Mathematical Physics, 124:1 (2000), 859–871 | DOI | DOI | Zbl

[5] Birman M. Sh., Suslina T. A., “A periodic magnetic Hamiltonian with a variable metric: The problem of absolute continuity”, St. Petersburg Mathematical Journal, 11:2 (2000), 203–232 | Zbl

[6] Kuchment P., Levendorski{î} S., “On the structure of spectra of periodic elliptic operators”, Transactions of the American Mathematical Society, 354:2 (2002), 537–569 | DOI | Zbl

[7] Kuchment P., “An overview of periodic elliptic operators”, Bulletin of the American Mathematical Society, 53:3 (2016), 343–414 | DOI | Zbl

[8] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Communications in Mathematical Physics, 33 (1973), 335–343 | DOI

[9] Birman M. Sh., Suslina T. A., “Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential”, St. Petersburg Mathematical Journal, 10:4 (1999), 579–601 | Zbl

[10] Shterenberg R. G., “Absulute continuity of a two-dimensional magnetic periodic Schr{ö}dinger operator with potentials of type of measure derivative”, Journal of Mathematical Sciences, 115:6 (2003), 2862–2882 | DOI | Zbl

[11] Shterenberg R. G., “Absolute continuity of the spectrum of two-dimensional periodic Schr{ö}dinger operator with positive electric potential”, St. Petersburg Mathematical Journal, 13:4 (2002), 659–683 | Zbl

[12] Danilov L. I., “On the spectra of two-dimensional periodic Schr{ö}dinger and Dirac operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2002, no. 3(26), 3–98 (in Russian)

[13] Danilov L. I., “The spectrum of the two-dimensional periodic Schr{ö}dinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | DOI | Zbl

[14] Shterenberg R. G., “Absolute continuity of spectra of two-dimensional periodic Schr{ö}dinger operators with strongly subordinate magnetic potential”, Journal of Mathematical Sciences, 129:4 (2005), 4087–4109 | DOI | Zbl

[15] Danilov L. I., “On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schr{ö}dinger operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, no. 1(29), 49–84 (in Russian)

[16] Sobolev A. V., “Absolute continuity of the periodic magnetic Schr{ö}dinger operator”, Inventiones mathematicae, 137:1 (1999), 85–112 | DOI | Zbl

[17] Danilov L. I., “Absolute continuity of the spectrum of a periodic Schr{ö}dinger operator”, Mathematical Notes, 73:1–2 (2003), 46–57 | DOI | DOI | Zbl

[18] Danilov L. I., “On absolute continuity of the spectrum of a periodic magnetic Schr{ö}dinger operator”, Journal of Physics A: Mathematical and Theoretical, 42:27 (2009), 275204 | DOI | Zbl

[19] Danilov L. I., “Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2008, no. 1, 61–96 (in Russian) | DOI

[20] Danilov L. I., On absolute continuity of the spectrum of a d-dimensional periodic magnetic Dirac operator, 2008, arXiv: 0805.0399v3 [math-ph]

[21] Shen Z., “On absolute continuity of the periodic Schr{ö}dinger operators”, International Mathematics Research Notices, 2001:1 (2001), 1–31 | DOI

[22] Danilov L. I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schr{ö}dinger operators”, Journal of Physics A: Mathematical and Theoretical, 43:21 (2010), 215201 | DOI | Zbl

[23] Suslina T. A., Shterenberg R. G., “Absolute continuity of the spectrum of the Schr{ö}dinger operator with the potential concentrated on a periodic system of hypersurfaces”, St. Petersburg Mathematical Journal, 13:5 (2002), 859–891 | Zbl

[24] Kachkovski{ĭ} I. V., “Stein–Tomas theorem for a torus and the periodic Schr{ö}dinger operator with singular potential”, St. Petersburg Mathematical Journal, 24:6 (2013), 939–948 | DOI | Zbl

[25] Kachkovskii I. V., Absence of eigenvalues in the spectrum of some Schr{ö}dinger operators with periodic coefficients, Abstract of Cand. Sci. (Phys.–Math.) Dissertation, St. Petersburg, 2013, 18 pp. (in Russian) | Zbl

[26] Kachkovski{ĭ} I., Filonov N., “Absolute continuity of the Schr{ö}dinger operator spectrum in a multidimensional cylinder”, St. Petersburg Mathematical Journal, 21:1 (2010), 95–109 | DOI | Zbl

[27] Kachkovskiy I., Filonov N., “Absolute continuity of the spectrum of the periodic Schr{ö}dinger operator in a layer and in a smooth cylinder”, Journal of Mathematical Sciences, 178:3 (2011), 274–281 | DOI | Zbl

[28] Kachkovskiy I. V., “Absence of eigenvalues for the periodic Schr{ö}dinger operator with singular potential in a rectangular cylinder”, Functional Analysis and Its Applications, 47:2 (2013), 104–112 | DOI | DOI | Zbl

[29] Kachkovskiy I. V., Filonov N. D., “Absolute continuity of the spectrum of the periodic Schr{ö}dinger operator in a cylinder with Robin boundary condition”, Functional Analysis and Its Applications, 54:2 (2020), 110–117 | DOI | DOI | Zbl

[30] Filonov N. D., Prokhorov A. O., “The Maxwell operator with periodic coefficients in a cylinder”, St. Petersburg Mathematical Journal, 29:6 (2018), 997–1006 | DOI | Zbl

[31] Frank R. L., Shterenberg R. G., “On the spectrum of partially periodic operators”, Operator Theory, Analysis and Mathematical Physics, Birkh{ä}user, Basel, 2007, 35–50 | DOI | Zbl

[32] Filonov N. D., “Absolute continuity of the spectrum of two-dimensional Schr{ö}dinger operator with partially periodic coefficients”, St. Petersburg Mathematical Journal, 29:2 (2018), 383–398 | DOI | Zbl

[33] Hoang Vu, Radosz M., “Absence of bound states for waveguides in two-dimensional periodic structures”, Journal of Mathematical Physics, 55:3 (2014), 033506 | DOI | Zbl

[34] Sobolev A. V., Walthoe J., “Absolute continuity in periodic waveguides”, Proceedings of the London Mathematical Society, 85:3 (2002), 717–741 | DOI | Zbl

[35] Cardone G., Nazarov S. A., Taskinen J., “Spectra of open waveguides in periodic media”, Journal of Functional Analysis, 269:8 (2015), 2328–2364 | DOI | Zbl

[36] Exner P., Kovařík H., Quantum waveguides, Springer, Berlin, 2015 | DOI | Zbl

[37] Korotyaev E., Saburova N., “Schr{ö}dinger operators on periodic discrete graphs”, Journal of Mathematical Analysis and Applications, 420:1 (2014), 576–611 | DOI | Zbl

[38] Korotyaev E., Saburova N., “Spectral estimates for Schr{ö}dinger operators on periodic discrete graphs”, St. Petersburg Mathematical Journal, 30:4 (2019), 667–698 | DOI | Zbl

[39] Exner P., Turek O., “High-energy asymptotics of the spectrum of a periodic square lattice quantum graphs”, Journal of Physics A: Mathematical and Theoretical, 43:47 (2010), 474024 | DOI | Zbl

[40] Gejler V. A., “The two-dimensional Schr{ö}dinger operator with a uniform magnetic field, and its perturbation by periodic zero-range potentials”, St. Petersburg Mathematical Journal, 3:3 (1992), 489–532 | Zbl

[41] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | Zbl

[42] Danilov L. I., “On the spectrum of a two-dimensional Schr{ö}dinger operator with a homogeneous magnetic field and a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 51 (2018), 3–41 (in Russian) | DOI | Zbl

[43] Danilov L. I., “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoretical and Mathematical Physics, 202:1 (2020), 41–57 | DOI | DOI | Zbl

[44] Danilov L. I., “On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L_{\mathrm{loc}}^p({\mathbb{R}}^2)$, $p>1$”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 55 (2020), 42–59 (in Russian) | DOI | Zbl

[45] Danilov L. I., “Absolute continuity of the spectrum of a periodic 3D magnetic Schr{ö}dinger operator with singular electric potential”, Mathematical Notes, 110:4 (2021), 497–510 | DOI | DOI | Zbl

[46] Danilov L. I., “Absolute continuity of the spectrum of a periodic Dirac operator”, Differential Equations, 36:2 (2000), 262–271 | DOI | Zbl

[47] Reed M., Simon B., Methods of modern mathematical physics, v. 1, Functional analysis, Academic Press, New York, 1972 | Zbl

[48] Danilov L. I., The spectrum of the Dirac operator with periodic potential. I, Deposited in VINITI 12.12.1991, No 4588-B91, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1991, 35 pp. (in Russian)

[49] Kato T., Perturbation theory for linear operators, Springer, Berlin, 1995 | DOI | Zbl

[50] Reed M., Simon B., Methods of modern mathematical physics, v. 4, Analysis of operators, Academic Press, New York, 1978 | Zbl

[51] Chandrasekharan K., Introduction to analytic number theory, Springer, Berlin, 1968 | Zbl