A method for estimating the statistical error of the solution in the inverse spectroscopy problem
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for obtaining the interval of statistical error of the solution of the inverse spectroscopy problem, for the estimation of the statistical error of experimental data of which the normal distribution law can be applied, has been proposed. With the help of mathematical modeling of the statistical error of partial spectral components obtained from the numerically stable solution of the inverse problem, it has become possible to specify the error of the corresponding solution. The problem of getting the inverse solution error interval is actual because the existing methods of solution error evaluation are based on the analysis of smooth functional dependences under rigid restrictions on the region of acceptable solutions (compactness, monotonicity, etc.). Their use in computer processing of real experimental data is extremely difficult and therefore, as a rule, is not applied. Based on the extraction of partial spectral components and the estimation of their error, a method for obtaining an interval of statistical error for the solution of inverse spectroscopy problems has been proposed in this work. The necessity and importance of finding the solution error interval to provide reliable results is demonstrated using examples of processing Mössbauer spectra.
Mots-clés : solution error interval
Keywords: inverse problem, normal distribution law, Mössbauer spectroscopy, mean squared error, partial components.
@article{IIMI_2021_58_a0,
     author = {T. M. Bannikova and V. M. Nemtsov and N. A. Baranova and G. N. Konygin and O. M. Nemtsova},
     title = {A method for estimating the statistical error of the solution in the inverse spectroscopy problem},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {58},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_58_a0/}
}
TY  - JOUR
AU  - T. M. Bannikova
AU  - V. M. Nemtsov
AU  - N. A. Baranova
AU  - G. N. Konygin
AU  - O. M. Nemtsova
TI  - A method for estimating the statistical error of the solution in the inverse spectroscopy problem
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 3
EP  - 17
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_58_a0/
LA  - ru
ID  - IIMI_2021_58_a0
ER  - 
%0 Journal Article
%A T. M. Bannikova
%A V. M. Nemtsov
%A N. A. Baranova
%A G. N. Konygin
%A O. M. Nemtsova
%T A method for estimating the statistical error of the solution in the inverse spectroscopy problem
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 3-17
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_58_a0/
%G ru
%F IIMI_2021_58_a0
T. M. Bannikova; V. M. Nemtsov; N. A. Baranova; G. N. Konygin; O. M. Nemtsova. A method for estimating the statistical error of the solution in the inverse spectroscopy problem. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 58 (2021), pp. 3-17. http://geodesic.mathdoc.fr/item/IIMI_2021_58_a0/

[1] Ogorodnikov I. N., Introduction to inverse problems of physical diagnostics, Ural Federal University, Yekaterinburg, 2017

[2] Babanov Yu. A., Vasin V. V., Ponomarev D. A., Devyaterikov D. I., Romashev L. N., Ustinov V. V., “A subnanometric resolution method for studying local atomic structure of interface and surface of multilayered nanoheterostructure thin films”, Thin Solid Films, 656 (2018), 44–52 | DOI

[3] Lee J. W., Prenter P. M., “An analysis of the numerical solution of Fredholm integral equations of the first kind”, Numerische Mathematik, 30:1 (1978), 1–23 | DOI | Zbl

[4] Hansen P. C., “The Backus–Gilbert method: SVD analysis and fast implementation”, Inverse Problems, 10:4 (1994), 895–904 | DOI | Zbl

[5] Kabanikhin S. I., “Definitions and examples of inverse and ill-posed problems”, Journal of Inverse and Ill-posed Problems, 16:4 (2008), 317–357 | DOI | Zbl

[6] Razavy M., An introduction to inverse problems in physics, World Scientific, Singapore, 2020 | DOI | Zbl

[7] Wells J. W., Birkinshaw K., “A matrix approach to resolution enhancement of XPS spectra by a modified maximum entropy method”, Journal of Electron Spectroscopy and Related Phenomena, 152:1–2 (2006), 37–43 | DOI

[8] Xu P., “A new look at Akaike's Bayesian information criterion for inverse ill-posed problems”, Journal of the Franklin Institute, 358:7 (2021), 4077–4102 | DOI | Zbl

[9] Zheng S., Ding C., Nie F., Regularized singular value decomposition and application to recommender system, 2018, arXiv: 1804.05090 [cs.LG]

[10] Xiong X., Xue X., “A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation”, Applied Mathematics and Computation, 349 (2019), 292–303 | DOI | Zbl

[11] Mohammadian-Behbahani M.-R., Saramad S., “Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy”, Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 887 (2018), 7–12 | DOI

[12] Vasin V. V., “Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation”, Journal of Inverse and Ill-posed Problems, 21:1 (2013), 109–123 | DOI | Zbl

[13] Qiao B., Liu J., Liu J., Yang Z., Chen X., “An enhanced sparse regularization method for impact force identification”, Mechanical Systems and Signal Processing, 126 (2019), 341–367 | DOI

[14] Leonov A. S., “Which of inverse problems can have a priori approximate solution accuracy estimates comparable in order with the data accuracy”, Numerical Analysis and Applications, 7:4 (2014), 284–292 | DOI | Zbl

[15] Verlan' A. F., Sizikov V. S., Integral equations: methods, algorithms, programs, Naukova Dumka, Kiev, 1986

[16] Morozov V. A., “On restoration of noisy signals by a regularization method”, Vychislitel'nye Metody i Programmirovanie, 13:1 (2012), 247–252 (in Russian)

[17] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, De Gruyter, Berlin, 2013 | DOI

[18] Yagola A. G., “Ill-posed problems with apriori information”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 7 (2010), 343–361 (in Russian)

[19] Nemtsova O. M., Ageev A. L., Voronina E. V., “The estimation of the error of the hyperfine interaction parameter distribution from M{ö}ssbauer spectra”, Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 187:1 (2002), 132–136 | DOI

[20] Sussman M. S., “Linear signal combination $T_2$ spectroscopy”, Magnetic Resonance Imaging, 66 (2020), 257–266 | DOI

[21] Henríquez P. A., Ruz G. A., “Noise reduction for near-infrared spectroscopy data using extreme learning machines”, Engineering Applications of Artificial Intelligence, 79 (2019), 13–22 | DOI

[22] Zelada-Ríos L., Pacheco-Barrios K., Galecio-Castillo M., Yamunaqué-Chunga C., Álvarez-Toledo K., Otiniano-Sifuentes R., “Acute disseminated encephalomyelitis and COVID-19: A systematic synthesis of worldwide cases”, Journal of Neuroimmunology, 359 (2021), 577674 | DOI

[23] Miguel R. B., Talebi-Moghaddam S., Zamani M., Turcotte C., Daun K. J., “Assessing flare combustion efficiency using imaging Fourier transform spectroscopy”, Journal of Quantitative Spectroscopy and Radiative Transfer, 273 (2021), 107835 | DOI

[24] Calvetti D., Lewis B., Reichel L., Sgallari F., “Tikhonov regularization with nonnegativity constraint”, Electronic Transactions on Numerical Analysis, 18:1 (2004), 153–173 | Zbl

[25] Lekhtmakher S., Shapiro M., “On the paper “Inverse methods for analyzing aerosol spectrometer measurements: A critical review””, Journal of Aerosol Science, 31:7 (2000), 867–873 | DOI

[26] Samaras S., Nicolae D., B{ö}ckmann Ch., Vasilescu J., Binietoglou I., Labzovskii L., Toanca F., Papayannis A., “Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols”, Journal of Computational Physics, 299 (2015), 156–174 | DOI | Zbl

[27] Chuev M. A., “An effective method for analyzing the hyperfine structure of gamma resonance spectra using the Voith profile”, Doklady Akademii Nauk, 438:6 (2011), 747–751 (in Russian)

[28] Pearson K., “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables in such that it can be reasonably supposed to have arisen from random sampling”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 5, 50:302 (1900), 157–175 | DOI | Zbl

[29] Taylor J. R., An introduction to error analysis: The study of uncertainties in physical measurements, University Science Books, 1982 | Zbl

[30] Prakash J., Sanny D., Kalva S. K., Pramanik M., Yalavarthy P. K., “Fractional regularization to improve photoacoustic tomographic image reconstruction”, IEEE Transactions on Medical Imaging, 38:8 (2019), 1935–1947 | DOI

[31] Reddy G. D., “A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme”, Applied Mathematics and Computation, 347 (2019), 464–476 | DOI | Zbl

[32] Mohammady S., Eslahchi M. R., “Extension of Tikhonov regularization method using linear fractional programming”, Journal of Computational and Applied Mathematics, 371 (2020), 112677 | DOI | Zbl

[33] Gao Y., Xiao L., Wu B., “TSVD and Tikhonov methods and influence factor analysis for NMR data in shale rock”, Journal of Petroleum Science and Engineering, 194 (2020), 107508 | DOI

[34] Kim I. G., Latypova N. V., Motorina O. L., Numerical methods, study guide, v. 2, Udmurt State University, Izhevsk, 2013

[35] Nemtsova O. M., Konygin G. N., “Improvement of the Tikhonov regularization method for solving the inverse problem of M{ö}ssbauer spectroscopy”, Journal of Applied Spectroscopy, 85:5 (2018), 931–935 | DOI

[36] Nemtsova O. M., Konygin G. N., Porsev V. E., “Separation of overlapping spectral lines using the Tikhonov regularization method”, Journal of Applied Spectroscopy, 88:2 (2021), 373–381 | DOI

[37] Konygin G. N., Nemtsova O. M., Porsev V. E., “M{ö}ssbauer spectra of solid solutions processed using the Voigt function”, Journal of Applied Spectroscopy, 86:3 (2019), 409–415 | DOI