Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 190-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

The issues of unique solvability of a boundary value problem for a mixed type integro-differential equation with two Caputo time-fractional operators and spectral parameters are considered. A mixed type integro-differential equation is a partial integro-differential equation of fractional order in both positive and negative parts of multidimensional rectangular domain under consideration. The fractional Caputo operator's order is less in the positive part of the domain, than the order of Caputo operator in the negative part of the domain. Using the method of Fourier series, two systems of countable systems of ordinary fractional integro-differential equations with degenerate kernels are obtained. Further, a method of degenerate kernels is used. To determine arbitrary integration constants, a system of algebraic equations is obtained. From this system, regular and irregular values of spectral parameters are calculated. The solution of the problem under consideration is obtained in the form of Fourier series. The unique solvability of the problem for regular values of spectral parameters is proved. To prove the convergence of Fourier series, the properties of the Mittag-Leffler function, Cauchy-Schwarz inequality and Bessel inequality are used. The continuous dependence of the problem solution on a small parameter for regular values of spectral parameters is also studied. The results are formulated as a theorem.
Keywords: integro-differential equation, mixed type equation, small parameter, spectral parameters, fractional Caputo operators, unique solvability.
@article{IIMI_2021_57_a9,
     author = {T. K. Yuldashev and E. T. Karimov},
     title = {Mixed type integro-differential equation with fractional order {Caputo} operators and spectral parameters},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {190--205},
     publisher = {mathdoc},
     volume = {57},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/}
}
TY  - JOUR
AU  - T. K. Yuldashev
AU  - E. T. Karimov
TI  - Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 190
EP  - 205
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/
LA  - en
ID  - IIMI_2021_57_a9
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%A E. T. Karimov
%T Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 190-205
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/
%G en
%F IIMI_2021_57_a9
T. K. Yuldashev; E. T. Karimov. Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 190-205. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl

[2] F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics”, Fractals and fractional calculus in continuum mechanics, Springer, Wien, 1997 | DOI | MR

[3] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, A. Torres, “On a fractional order Ebola epidemic model”, Advances in Difference Equations, 2015:1 (2015), 278 | DOI | MR | Zbl

[4] A. Hussain, D. Baleanu, M. Adeel, “Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model”, Advances in Difference Equations, 2020:1 (2020), 384 | DOI | MR

[5] S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch, D. Baleanu, “A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative”, Discrete and Continuous Dynamical Systems, 13:3, 975–993, 2020 | DOI | MR | Zbl

[6] J. A. Tenreiro Machado, Handbook of fractional calculus with applications, in 8 volumes, Walter de Gruyter GmbH, Berlin-Boston, 2019

[7] D. Kumar, D. Baleanu, “Editorial: fractional calculus and its applications in physics”, Frontiers in Physics, 7 (2019) | DOI

[8] H. Sun, A. Chang, Y. Zhang, W. Chen, “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”, Fractional Calculus and Applied Analysis, 22:1 (2019), 27–59 | DOI | MR | Zbl

[9] R. K. Saxena, R. Garra, E. Orsingher, “Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives”, Integral Transforms and Special Functions, 27:1 (2016), 30–42 | DOI | MR | Zbl

[10] S. Patnaik, J. P. Hollkamp, F. Semperlotti, “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476:2234 (2020), 20190498 | DOI | MR | Zbl

[11] T. Sandev, Z. Tomovski, Fractional equations and models, Springer, Cham, 2019 | DOI | MR | Zbl

[12] I. M. Gel'fand, “Some questions of analysis and differential equations”, Uspekhi Matematicheskikh Nauk, 14:3(87) (1959), 3–19 (in Russian) | MR | Zbl

[13] Ya. S. Uflyand, “On oscillation propagation in compound electric lines”, Inzhenerno-Phizicheskiy Zhurnal, 7:1 (1964), 89–92 (in Russian)

[14] O. Terlyga, H. Bellout, F. Bloom, “A hyperbolic-parabolic system arising in pulse combustion: existence of solutions for the linearized problem”, Electronic Journal of Differential Equations, 2013:46 (2013), 1–42 https://ejde.math.txstate.edu/Volumes/2013/46/terlyga.pdf | MR

[15] O. Kh. Abdullaev, K. S. Sadarangani, “Non-local problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative”, Electronic Journal of Differential Equations, 2016:164 (2016), 1–10 https://ejde.math.txstate.edu/Volumes/2016/164/abdullaev.pdf | MR

[16] P. Agarwal, A. S. Berdyshev, E. T. Karimov, “Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative”, Results in Mathematics, 71:3-4 (2017), 1235–1257 | DOI | MR | Zbl

[17] A. N. Zarubin, “Boundary value problem for a differential-difference mixed-compound equation with fractional derivative and with functional delay and advance”, Differential Equations, 55:2 (2019), 220–230 | DOI | MR | Zbl

[18] E. Karimov, N. Al-Salti, S. Kerbal, “An inverse source non-local problem for a mixed type equation with a Caputo fractional differential operator”, East Asian Journal on Applied Mathematics, 7:2 (2017), 417–438 | DOI | MR | Zbl

[19] E. T. Karimov, S. Kerbal, N. Al-Salti, “Inverse source problem for multi-term fractional mixed type equation”, Advanes in real and complex analysis with applications, Birkhauser, Singapore, 2017, 289–301 | DOI | MR | Zbl

[20] O. A. Repin, “Nonlocal problem with Saigo operators for mixed type equation of the third order”, Russian Mathematics, 63:1 (2019), 55–60 | DOI | MR | Zbl

[21] O. A. Repin, “On a problem for a mixed-type equation with fractional derivative”, Russian Mathematics, 62:8 (2018), 38–42 | DOI | MR | Zbl

[22] M. S. Salakhitdinov, E. T. Karimov, “Uniqueness of an inverse source non-local problem for fractional order mixed type equations”, Eurasian Mathematical Journal, 7:1 (2016), 74–83 | MR | Zbl

[23] T. K. Yuldashev, B. J. Kadirkulov, “Boundary value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator”, Axioms, 9:2 (2020), 68 | DOI

[24] T. K. Yuldashev, B. J. Kadirkulov, “Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator”, Ural Mathematical Journal, 6:1 (2020), 153–167 | DOI | MR | Zbl

[25] T. K. Yuldashev, “Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel”, Differential Equations, 54:12 (2018), 1646–1653 | DOI | MR | Zbl

[26] T. K. Yuldashev, “On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel”, Computational Mathematics and Mathematical Physics, 59:2 (2019), 241–252 | DOI | MR | Zbl

[27] T. K. Yuldashev, “On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels”, Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 52:1 (2018), 19–26 | Zbl

[28] T. K. Yuldashev, “Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential equations”, Axioms, 9:2 (2020), 45 | DOI

[29] T. K. Yuldashev, “Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 122–134 (in Russian) | DOI | MR | Zbl

[30] T. K. Yuldashev, “On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument”, Lobachevskii Journal of Mathematics, 41:1 (2020), 111–123 | DOI | MR | Zbl