Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_57_a9, author = {T. K. Yuldashev and E. T. Karimov}, title = {Mixed type integro-differential equation with fractional order {Caputo} operators and spectral parameters}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {190--205}, publisher = {mathdoc}, volume = {57}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/} }
TY - JOUR AU - T. K. Yuldashev AU - E. T. Karimov TI - Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 190 EP - 205 VL - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/ LA - en ID - IIMI_2021_57_a9 ER -
%0 Journal Article %A T. K. Yuldashev %A E. T. Karimov %T Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 190-205 %V 57 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/ %G en %F IIMI_2021_57_a9
T. K. Yuldashev; E. T. Karimov. Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 190-205. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a9/
[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl
[2] F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics”, Fractals and fractional calculus in continuum mechanics, Springer, Wien, 1997 | DOI | MR
[3] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, A. Torres, “On a fractional order Ebola epidemic model”, Advances in Difference Equations, 2015:1 (2015), 278 | DOI | MR | Zbl
[4] A. Hussain, D. Baleanu, M. Adeel, “Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model”, Advances in Difference Equations, 2020:1 (2020), 384 | DOI | MR
[5] S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch, D. Baleanu, “A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative”, Discrete and Continuous Dynamical Systems, 13:3, 975–993, 2020 | DOI | MR | Zbl
[6] J. A. Tenreiro Machado, Handbook of fractional calculus with applications, in 8 volumes, Walter de Gruyter GmbH, Berlin-Boston, 2019
[7] D. Kumar, D. Baleanu, “Editorial: fractional calculus and its applications in physics”, Frontiers in Physics, 7 (2019) | DOI
[8] H. Sun, A. Chang, Y. Zhang, W. Chen, “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”, Fractional Calculus and Applied Analysis, 22:1 (2019), 27–59 | DOI | MR | Zbl
[9] R. K. Saxena, R. Garra, E. Orsingher, “Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives”, Integral Transforms and Special Functions, 27:1 (2016), 30–42 | DOI | MR | Zbl
[10] S. Patnaik, J. P. Hollkamp, F. Semperlotti, “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476:2234 (2020), 20190498 | DOI | MR | Zbl
[11] T. Sandev, Z. Tomovski, Fractional equations and models, Springer, Cham, 2019 | DOI | MR | Zbl
[12] I. M. Gel'fand, “Some questions of analysis and differential equations”, Uspekhi Matematicheskikh Nauk, 14:3(87) (1959), 3–19 (in Russian) | MR | Zbl
[13] Ya. S. Uflyand, “On oscillation propagation in compound electric lines”, Inzhenerno-Phizicheskiy Zhurnal, 7:1 (1964), 89–92 (in Russian)
[14] O. Terlyga, H. Bellout, F. Bloom, “A hyperbolic-parabolic system arising in pulse combustion: existence of solutions for the linearized problem”, Electronic Journal of Differential Equations, 2013:46 (2013), 1–42 https://ejde.math.txstate.edu/Volumes/2013/46/terlyga.pdf | MR
[15] O. Kh. Abdullaev, K. S. Sadarangani, “Non-local problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative”, Electronic Journal of Differential Equations, 2016:164 (2016), 1–10 https://ejde.math.txstate.edu/Volumes/2016/164/abdullaev.pdf | MR
[16] P. Agarwal, A. S. Berdyshev, E. T. Karimov, “Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative”, Results in Mathematics, 71:3-4 (2017), 1235–1257 | DOI | MR | Zbl
[17] A. N. Zarubin, “Boundary value problem for a differential-difference mixed-compound equation with fractional derivative and with functional delay and advance”, Differential Equations, 55:2 (2019), 220–230 | DOI | MR | Zbl
[18] E. Karimov, N. Al-Salti, S. Kerbal, “An inverse source non-local problem for a mixed type equation with a Caputo fractional differential operator”, East Asian Journal on Applied Mathematics, 7:2 (2017), 417–438 | DOI | MR | Zbl
[19] E. T. Karimov, S. Kerbal, N. Al-Salti, “Inverse source problem for multi-term fractional mixed type equation”, Advanes in real and complex analysis with applications, Birkhauser, Singapore, 2017, 289–301 | DOI | MR | Zbl
[20] O. A. Repin, “Nonlocal problem with Saigo operators for mixed type equation of the third order”, Russian Mathematics, 63:1 (2019), 55–60 | DOI | MR | Zbl
[21] O. A. Repin, “On a problem for a mixed-type equation with fractional derivative”, Russian Mathematics, 62:8 (2018), 38–42 | DOI | MR | Zbl
[22] M. S. Salakhitdinov, E. T. Karimov, “Uniqueness of an inverse source non-local problem for fractional order mixed type equations”, Eurasian Mathematical Journal, 7:1 (2016), 74–83 | MR | Zbl
[23] T. K. Yuldashev, B. J. Kadirkulov, “Boundary value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator”, Axioms, 9:2 (2020), 68 | DOI
[24] T. K. Yuldashev, B. J. Kadirkulov, “Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator”, Ural Mathematical Journal, 6:1 (2020), 153–167 | DOI | MR | Zbl
[25] T. K. Yuldashev, “Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel”, Differential Equations, 54:12 (2018), 1646–1653 | DOI | MR | Zbl
[26] T. K. Yuldashev, “On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel”, Computational Mathematics and Mathematical Physics, 59:2 (2019), 241–252 | DOI | MR | Zbl
[27] T. K. Yuldashev, “On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels”, Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 52:1 (2018), 19–26 | Zbl
[28] T. K. Yuldashev, “Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential equations”, Axioms, 9:2 (2020), 45 | DOI
[29] T. K. Yuldashev, “Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 122–134 (in Russian) | DOI | MR | Zbl
[30] T. K. Yuldashev, “On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument”, Lobachevskii Journal of Mathematics, 41:1 (2020), 111–123 | DOI | MR | Zbl