Numerical method for fractional diffusion-wave equations with functional delay
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 156-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fractional diffusion-wave equation with a nonlinear effect of functional delay, an implicit numerical method is constructed. The scheme is based on the L2-method of approximation of the fractional derivative of the order from 1 to 2, interpolation and extrapolation with the given properties of discrete prehistory and an analogue of the Crank-Nicolson method. The order of convergence of the method is investigated using the ideas of the general theory of difference schemes with heredity. The order of convergence of the method is more significant than in previously known methods, depending on the order of the starting values. The main point of the proof is the use of the stability of the L2-method. The results of comparing numerical experiments with other schemes are presented: a purely implicit method and a purely explicit method, these results showed, in general, the advantages of the proposed scheme.
Mots-clés : fractional diffusion wave equation, interpolation
Keywords: functional delay, L2-method, Crank-Nicholson scheme, order of convergence.
@article{IIMI_2021_57_a6,
     author = {V. G. Pimenov and E. E. Tashirova},
     title = {Numerical method for fractional diffusion-wave equations with functional delay},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {156--169},
     publisher = {mathdoc},
     volume = {57},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - E. E. Tashirova
TI  - Numerical method for fractional diffusion-wave equations with functional delay
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 156
EP  - 169
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/
LA  - ru
ID  - IIMI_2021_57_a6
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A E. E. Tashirova
%T Numerical method for fractional diffusion-wave equations with functional delay
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 156-169
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/
%G ru
%F IIMI_2021_57_a6
V. G. Pimenov; E. E. Tashirova. Numerical method for fractional diffusion-wave equations with functional delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 156-169. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/

[1] J. Wu, Theory and applications of partial functional differential equations, Springer, New York, 1996 | DOI | MR | Zbl

[2] P.-P. Liu, “Periodic solutions in an epidemic model with diffusion and delay”, Applied Mathematics and Computation, 265 (2015), 275–291 | DOI | MR | Zbl

[3] V. G. Pimenov, Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014

[4] C. Li, F. Zeng, Numerical methods for fractional calculus, CRC Press, Boca Raton, 2015 | MR | Zbl

[5] Z. Sun, X. Wu, “A fully discrete difference scheme for diffusion-wave system”, Applied Numerical Mathematics, 56:2 (2006), 193–209 | DOI | MR | Zbl

[6] H. Ye, F. Liu, V. Anh, “Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains”, Journal of Computational Physics, 298 (2015), 652–660 | DOI | MR | Zbl

[7] A. S. Hendy, R. H. De Staelen, V. G. Pimenov, “A semi-linear delayed diffusion-wave system with distributed order in time”, Numerical Algorithms, 77:3 (2018), 885–903 | DOI | MR | Zbl

[8] V. Pimenov, E. Tashirova, “Convergence of the L2-method for a fractional diffusion-wave equations with delay”, AIP Conference Proceedings, 2312 (2020), 050016, 1–8 | DOI

[9] D. Li, H. L. Liao, W. Sun, J. Wang, J. Zhang, “Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems”, Communications in Computational Physics, 24:1 (2018), 86–103 | DOI | MR

[10] L. Li, B. Zhou, X. Chen, Z. Wang, “Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay”, Applied Mathematics and Computation, 337 (2018), 144–152 | DOI | MR | Zbl

[11] A. S. Hendy, J. E. Macías-Díaz, “A novel discrete Gronwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations”, Communications in Nonlinear Science and Numerical Simulation, 73 (2019), 110–119 | DOI | MR | Zbl

[12] A. S. Hendy, M. A. Zaky, “Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrodinger equations”, Applied Numerical Mathematics, 156 (2020), 276–302 | DOI | MR | Zbl

[13] A. V. Kim, V. G. Pimenov, i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M.–Izhevsk, 2004