Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_57_a6, author = {V. G. Pimenov and E. E. Tashirova}, title = {Numerical method for fractional diffusion-wave equations with functional delay}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {156--169}, publisher = {mathdoc}, volume = {57}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/} }
TY - JOUR AU - V. G. Pimenov AU - E. E. Tashirova TI - Numerical method for fractional diffusion-wave equations with functional delay JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 156 EP - 169 VL - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/ LA - ru ID - IIMI_2021_57_a6 ER -
%0 Journal Article %A V. G. Pimenov %A E. E. Tashirova %T Numerical method for fractional diffusion-wave equations with functional delay %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 156-169 %V 57 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/ %G ru %F IIMI_2021_57_a6
V. G. Pimenov; E. E. Tashirova. Numerical method for fractional diffusion-wave equations with functional delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 156-169. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a6/
[1] J. Wu, Theory and applications of partial functional differential equations, Springer, New York, 1996 | DOI | MR | Zbl
[2] P.-P. Liu, “Periodic solutions in an epidemic model with diffusion and delay”, Applied Mathematics and Computation, 265 (2015), 275–291 | DOI | MR | Zbl
[3] V. G. Pimenov, Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014
[4] C. Li, F. Zeng, Numerical methods for fractional calculus, CRC Press, Boca Raton, 2015 | MR | Zbl
[5] Z. Sun, X. Wu, “A fully discrete difference scheme for diffusion-wave system”, Applied Numerical Mathematics, 56:2 (2006), 193–209 | DOI | MR | Zbl
[6] H. Ye, F. Liu, V. Anh, “Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains”, Journal of Computational Physics, 298 (2015), 652–660 | DOI | MR | Zbl
[7] A. S. Hendy, R. H. De Staelen, V. G. Pimenov, “A semi-linear delayed diffusion-wave system with distributed order in time”, Numerical Algorithms, 77:3 (2018), 885–903 | DOI | MR | Zbl
[8] V. Pimenov, E. Tashirova, “Convergence of the L2-method for a fractional diffusion-wave equations with delay”, AIP Conference Proceedings, 2312 (2020), 050016, 1–8 | DOI
[9] D. Li, H. L. Liao, W. Sun, J. Wang, J. Zhang, “Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems”, Communications in Computational Physics, 24:1 (2018), 86–103 | DOI | MR
[10] L. Li, B. Zhou, X. Chen, Z. Wang, “Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay”, Applied Mathematics and Computation, 337 (2018), 144–152 | DOI | MR | Zbl
[11] A. S. Hendy, J. E. Macías-Díaz, “A novel discrete Gronwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations”, Communications in Nonlinear Science and Numerical Simulation, 73 (2019), 110–119 | DOI | MR | Zbl
[12] A. S. Hendy, M. A. Zaky, “Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrodinger equations”, Applied Numerical Mathematics, 156 (2020), 276–302 | DOI | MR | Zbl
[13] A. V. Kim, V. G. Pimenov, i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M.–Izhevsk, 2004