Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_57_a5, author = {P. D. Lebedev and A. A. Uspenskii and V. N. Ushakov}, title = {Iterative algorithms for minimizing the {Hausdorff} distance between convex polyhedrons}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {142--155}, publisher = {mathdoc}, volume = {57}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a5/} }
TY - JOUR AU - P. D. Lebedev AU - A. A. Uspenskii AU - V. N. Ushakov TI - Iterative algorithms for minimizing the Hausdorff distance between convex polyhedrons JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 142 EP - 155 VL - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a5/ LA - ru ID - IIMI_2021_57_a5 ER -
%0 Journal Article %A P. D. Lebedev %A A. A. Uspenskii %A V. N. Ushakov %T Iterative algorithms for minimizing the Hausdorff distance between convex polyhedrons %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 142-155 %V 57 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a5/ %G ru %F IIMI_2021_57_a5
P. D. Lebedev; A. A. Uspenskii; V. N. Ushakov. Iterative algorithms for minimizing the Hausdorff distance between convex polyhedrons. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 142-155. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a5/
[1] E. M. Bronshtein, “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovremennaya matematika. Fundamentalnye napravleniya, 22, 2007, 5–37
[2] H. Alt, P. Braß, M. Godau, C. Knauer, C. Wenk, “Computing the Hausdorff distance of geometric patterns and shapes”, Discrete and Computational Geometry, Springer, Berlin-Heidelberg, 2003, 65–76 | DOI | MR | Zbl
[3] P. M. Gruber, “Approximation by convex polytopes”, Polytopes: abstract, convex and computational, Springer, Dordrecht, 1994, 173–203 | DOI | MR
[4] D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, “Comparing images using the Hausdorff distance”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:9 (1993), 850–863 | DOI
[5] S. Theodoridis, K. Koutroumbas, Pattern recognition, Academic Press, 2006 | DOI | MR | Zbl
[6] V. N. Ushakov, A. S. Lakhtin, P. D. Lebedev, “Optimizatsiya khausdorfova rasstoyaniya mezhdu mnozhestvami v evklidovom prostranstve”, Trudy Instituta matematiki i mekhaniki UrO RAN, 20, no. 3, 2014, 291–308
[7] V. N. Ushakov, P. D. Lebedev, “Iteratsionnye metody minimizatsii khausdorfova rasstoyaniya mezhdu podvizhnymi mnogougolnikami”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 27:1 (2017), 86–97 | DOI | MR | Zbl
[8] V. N. Ushakov, P. D. Lebedev, A. M. Tarasyev, A. V. Ushakov, “Optimization of the Hausdorff distance between convex polyhedrons in $\mathbf{R}^3$”, IFAC-PapersOnLine, 48:25 (2015), 197–201 | DOI
[9] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6(120) (1964), 139–145 | MR | Zbl
[10] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR
[11] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973
[12] D. I. Danilov, A. S. Lakhtin, “Optimization of the algorithm for determining the Hausdorff distance for convex polygons”, Ural Mathematical Journal, 4:1 (2018), 14–23 | DOI | MR | Zbl
[13] N. Z. Shor, Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Naukova dumka, Kiev, 1979
[14] P. K. Belobrov, “K voprosu o chebyshevskom tsentre mnozhestva”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1964, no. 1, 3–9 | MR | Zbl
[15] P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Algoritmy minimizatsii khausdorfova otkloneniya vypuklogo kompakta ot nabora podvizhnykh vypuklykh mnogougolnikov”, Chelyabinskii fiziko-matematicheskii zhurnal, 5:2 (2020), 218–232 | DOI | MR
[16] P. D. Lebedev, N. G. Lavrov, “Algoritmy postroeniya optimalnykh upakovok sharov v ellipsoidy”, Izvestiya Instituta matematiki i informatiki Udmurtskogo gosudarstvennogo universiteta, 52 (2018), 59–74 | DOI | MR | Zbl