Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_57_a4, author = {M. Ibrahim and V. G. Pimenov}, title = {Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {128--141}, publisher = {mathdoc}, volume = {57}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a4/} }
TY - JOUR AU - M. Ibrahim AU - V. G. Pimenov TI - Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 128 EP - 141 VL - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a4/ LA - en ID - IIMI_2021_57_a4 ER -
%0 Journal Article %A M. Ibrahim %A V. G. Pimenov %T Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 128-141 %V 57 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a4/ %G en %F IIMI_2021_57_a4
M. Ibrahim; V. G. Pimenov. Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 128-141. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a4/
[1] V. G. Pimenov, Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014
[2] M. M. Meerschaert, C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations”, Applied Numerical Mathematics, 56:1 (2006), 80–90 | DOI | MR | Zbl
[3] C. Tadjeran, M. M. Meerschaert, H. P. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation”, Journal of Computational Physics, 213:1 (2006), 205–213 | DOI | MR | Zbl
[4] V. G. Pimenov, A. S. Hendy, “A fractional analog of Crank-Nicolson method for the two sided space fractional partial equation with functional delay”, Ural Mathematical Journal, 2:1 (2016), 48–57 | DOI | Zbl
[5] M. M. Meerschaert, H. P. Scheffler, C. Tadjeran, “Finite difference methods for two-dimensional fractional dispersion equation”, Journal of Computational Physics, 211:1 (2006), 249–261 | DOI | MR | Zbl
[6] W. Tian, H. Zhou, W. Deng, “A class of second order difference approximations for solving space fractional diffusion equations”, Mathematics of Computation, 84:294 (2015), 1703–1727 | DOI | MR | Zbl
[7] X. Q. Jin, F. R. Lin, Z. Zhao, “Preconditioned iterative methods for two-dimensional space-fractional diffusion equations”, Communications in Computational Physics, 18:2 (2015), 469–488 | DOI | MR | Zbl
[8] X. L. Lin, M. K. Ng, H. W. Sun, “Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equation with variable diffusion coefficients”, Journal of Scientific Computing, 75:2 (2018), 1102–1127 | DOI | MR | Zbl
[9] X. L. Lin, M. K. Ng, “A fast solver for multidimensional time-space fractional diffusion equation with variable coefficients”, Computers and Mathematics with Applications, 78:5 (2019), 1477–1489 | DOI | MR | Zbl
[10] A. S. Hendy, J. E. Macías-Díaz, “A conservative scheme with optimal error estimates for a multidimension al space-fractional Gross-Pitaevskii equation”, International Journal of Applied Mathematics and Computer Science, 29:4 (2019), 713–723 | DOI | MR | Zbl
[11] X. Yue, S. Shu, X. Xu, W. Bu, K. Pan, “Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations”, Computers and Mathematics with Applications, 78:11 (2019), 3471–3484 | DOI | MR | Zbl
[12] R. Du, A. A. Alikhanov, Z. Z. Sun, “Temporal second order difference schemes for the multidimensional variable-order time fractional sub-diffusion equations”, Computers and Mathematics with Applications, 79:10 (2020), 2952–2972 | DOI | MR | Zbl
[13] M. A. Zaky, J. T. Machado, “Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations”, Computers and Mathematics with Applications, 79:2 (2020), 476–488 | DOI | MR | Zbl
[14] A. V. Kim, V. G. Pimenov, i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2004
[15] A. V. Lekomtsev, V. G. Pimenov, “Skhodimost metoda peremennykh napravlenii chislennogo resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 102–118
[16] V. Pimenov, A. Hendy, M. Ibrahim, “Numerical method for two-dimensional space fractional equations with functional delay”, AIP Conference Proceedings, 2312 (2020), 050017, 1–6 | DOI