Numerical algorithm for fractional order population dynamics model with delay
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 91-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fractional-diffusion equation with nonlinearity in the differentiation operator and with the effect of functional delay, an implicit numerical method is constructed based on the approximation of the fractional derivative and the use of interpolation and extrapolation of discrete history. The source of this problem is a generalized model from population theory. Using a fractional discrete analogue of Gronwall's lemma, the convergence of the method is proved under certain conditions. The resulting system of nonlinear equations using Newton's method is reduced to a sequence of linear systems with tridiagonal matrices. Numerical results are given for a test example with distributed delay and a model example from the theory of population with concentrated constant delay.
Keywords: population model, differentiation with nonlinearity, functional delay, difference scheme, Newton's method, order of convergence.
Mots-clés : fractional-diffusion equation
@article{IIMI_2021_57_a2,
     author = {T. V. Gorbova},
     title = {Numerical algorithm for fractional order population dynamics model with delay},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {91--103},
     publisher = {mathdoc},
     volume = {57},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/}
}
TY  - JOUR
AU  - T. V. Gorbova
TI  - Numerical algorithm for fractional order population dynamics model with delay
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 91
EP  - 103
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/
LA  - ru
ID  - IIMI_2021_57_a2
ER  - 
%0 Journal Article
%A T. V. Gorbova
%T Numerical algorithm for fractional order population dynamics model with delay
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 91-103
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/
%G ru
%F IIMI_2021_57_a2
T. V. Gorbova. Numerical algorithm for fractional order population dynamics model with delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 91-103. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/

[1] V. K. Srivastava, S. Kumar, M. K. Awasthi, K. B. Singh, “Two-dimensional time fractional-order biological population model and its analytical solution”, Egyptian Journal of Basic and Applied Sciences, 1:1 (2014), 71–76 | DOI

[2] V. G. Babskii, A. D. Myshkis, “Matematicheskie modeli v biologii, svyazannye s uchetom posledeistviya”, Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983, 383–394

[3] J. E. Macías-Díaz, “Numerical study of the process of nonlinear supratransmission in Riesz spacefractional sine-Gordon equations”, Communications in Nonlinear Science and Numerical Simulation, 46 (2017), 89–102 | DOI | MR | Zbl

[4] G. Gao, A. A. Alikhanov, Z. Sun, “The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional subdiffusion equations”, Journal of Scientific Computing, 73:1 (2017), 93–121 | DOI | MR | Zbl

[5] M. Stynes, E. O'Riordan, J. Gracia, “Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation”, SIAM Journal on Numerical Analysis, 55:2 (2017), 1057–1079 | DOI | MR | Zbl

[6] H. Liao, D. Li, J. Zhang, “Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations”, SIAM Journal on Numerical Analysis, 56:2 (2018), 1112–1133 | DOI | MR | Zbl

[7] H. Chen, M. Stynes, “Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem”, Journal of Scientific Computing, 79:1 (2019), 624–647 | DOI | MR | Zbl

[8] L. Płociniczak, “Numerical method for the time-fractional porous medium equation”, SIAM Journal on Numerical Analysis, 57:2 (2019), 638–656 | DOI | MR

[9] D. Li, H. Liao, W. Sun, J. Wang, J. Zhang, “Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems”, Communications in Computational Physics, 24:1 (2018), 86–103 | DOI | MR

[10] L. Li, B. Zhou, X. Chen, Z. Wang, “Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay”, Applied Mathematics and Computation, 337 (2018), 144–152 | DOI | MR | Zbl

[11] A. S. Hendy, V. G. Pimenov, J. E. Macías-Díaz, “Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay”, Numerical Methods for Partial Differential Equations, 36:1 (2020), 118–132 | DOI | MR | Zbl

[12] V. G. Pimenov, Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014

[13] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[14] T. Gorbova, S. Solodushkin, “Nonlinear difference scheme for fractional equation with functional delay”, AIP Conference Proceedings, 2312:1 (2020), 050007 | DOI

[15] C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, CRC Press, Taylor Francis Group, Boca Raton, 2015 | MR | Zbl

[16] A. V. Kim, V. G. Pimenov, i-Gladkii analiz i chislennye metody resheniya funktsionalnodiffrentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2004