Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_57_a2, author = {T. V. Gorbova}, title = {Numerical algorithm for fractional order population dynamics model with delay}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {91--103}, publisher = {mathdoc}, volume = {57}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/} }
TY - JOUR AU - T. V. Gorbova TI - Numerical algorithm for fractional order population dynamics model with delay JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 91 EP - 103 VL - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/ LA - ru ID - IIMI_2021_57_a2 ER -
%0 Journal Article %A T. V. Gorbova %T Numerical algorithm for fractional order population dynamics model with delay %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 91-103 %V 57 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/ %G ru %F IIMI_2021_57_a2
T. V. Gorbova. Numerical algorithm for fractional order population dynamics model with delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 91-103. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a2/
[1] V. K. Srivastava, S. Kumar, M. K. Awasthi, K. B. Singh, “Two-dimensional time fractional-order biological population model and its analytical solution”, Egyptian Journal of Basic and Applied Sciences, 1:1 (2014), 71–76 | DOI
[2] V. G. Babskii, A. D. Myshkis, “Matematicheskie modeli v biologii, svyazannye s uchetom posledeistviya”, Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983, 383–394
[3] J. E. Macías-Díaz, “Numerical study of the process of nonlinear supratransmission in Riesz spacefractional sine-Gordon equations”, Communications in Nonlinear Science and Numerical Simulation, 46 (2017), 89–102 | DOI | MR | Zbl
[4] G. Gao, A. A. Alikhanov, Z. Sun, “The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional subdiffusion equations”, Journal of Scientific Computing, 73:1 (2017), 93–121 | DOI | MR | Zbl
[5] M. Stynes, E. O'Riordan, J. Gracia, “Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation”, SIAM Journal on Numerical Analysis, 55:2 (2017), 1057–1079 | DOI | MR | Zbl
[6] H. Liao, D. Li, J. Zhang, “Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations”, SIAM Journal on Numerical Analysis, 56:2 (2018), 1112–1133 | DOI | MR | Zbl
[7] H. Chen, M. Stynes, “Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem”, Journal of Scientific Computing, 79:1 (2019), 624–647 | DOI | MR | Zbl
[8] L. Płociniczak, “Numerical method for the time-fractional porous medium equation”, SIAM Journal on Numerical Analysis, 57:2 (2019), 638–656 | DOI | MR
[9] D. Li, H. Liao, W. Sun, J. Wang, J. Zhang, “Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems”, Communications in Computational Physics, 24:1 (2018), 86–103 | DOI | MR
[10] L. Li, B. Zhou, X. Chen, Z. Wang, “Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay”, Applied Mathematics and Computation, 337 (2018), 144–152 | DOI | MR | Zbl
[11] A. S. Hendy, V. G. Pimenov, J. E. Macías-Díaz, “Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay”, Numerical Methods for Partial Differential Equations, 36:1 (2020), 118–132 | DOI | MR | Zbl
[12] V. G. Pimenov, Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014
[13] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[14] T. Gorbova, S. Solodushkin, “Nonlinear difference scheme for fractional equation with functional delay”, AIP Conference Proceedings, 2312:1 (2020), 050007 | DOI
[15] C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, CRC Press, Taylor Francis Group, Boca Raton, 2015 | MR | Zbl
[16] A. V. Kim, V. G. Pimenov, i-Gladkii analiz i chislennye metody resheniya funktsionalnodiffrentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2004