Impulse control of a two-link manipulation robot
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 77-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear problem of controlling the movements of a two-link manipulation robot is considered. The free mechanical system has two first integrals in involution. Methods of classical mechanics are used for analytical integration of the system of nonlinear differential equations. A trajectory connecting the initial and final positions of the two-link manipulation robot in the configuration space is found. Impulse controls at the initial moment of time impart the necessary energy to the robot to enter this trajectory. Impulse controls are also used to damp the speeds of the robot at the end position. In a computer simulation of the proposed procedure for moving the robot, generalized impulse controls are approximated by rectangular impulses.
Keywords: optimal control, Hamilton-Jacobi equations, first integrals, impulse control, speed, energy consumption.
Mots-clés : manipulation robot
@article{IIMI_2021_57_a1,
     author = {Yu. F. Dolgii and I. A. Chupin},
     title = {Impulse control of a two-link manipulation robot},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {57},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a1/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - I. A. Chupin
TI  - Impulse control of a two-link manipulation robot
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 77
EP  - 90
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a1/
LA  - ru
ID  - IIMI_2021_57_a1
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A I. A. Chupin
%T Impulse control of a two-link manipulation robot
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 77-90
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a1/
%G ru
%F IIMI_2021_57_a1
Yu. F. Dolgii; I. A. Chupin. Impulse control of a two-link manipulation robot. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 77-90. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a1/

[1] E. P. Popov, A. F. Vereschagin, S. L. Zenkevich, Manipulyatsionnye roboty: dinamika i algoritmy, Nauka, M., 1978

[2] F. L. Chernousko, I. M. Ananevskii, S. A. Reshmin, Metody upravleniya nelineinymi mekhanicheskimi sistemami, Fizmatlit, M., 2006

[3] M. W. Spong, S. Hutchinson, M. Vidyasagar, Robot modeling and control, Wiley, New York, 2006

[4] S. V. Lutmanov, L. V. Kuksenok, E. S. Popova, “Zadachi upravleniya dvukhzvennym manipulyatorom s vraschatelnymi kinematicheskimi parami”, Fundamentalnye issledovaniya, 2013, no. 6-4, 886–891

[5] E. V. Sosorov, Metody rascheta i proektirovaniya manipulyatsionnykh sistem s impulsnymi dvigatelyami, avtoreferat dis. ... kand. tekhn. nauk, Ulan-Ude, 2003

[6] F. L. Chernousko, N. N. Bolotnik, V. G. Gradetskii, Manipulyatsionnye roboty, Nauka, M., 1989 | MR

[7] M. H. Korayem, H. N. Rahimi, A. Nikoobin, “Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints”, Appl. Math. Model., 36:7 (2012), 3229–3244 | DOI | MR | Zbl

[8] L. Zhang, J. Liu, “Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model”, IET Control Theory Appl., 7:1 (2013), 43–51 | DOI | MR

[9] J. N. Yun, J. B. Su, “Design of a disturbance observer for a two-link manipulator with flexible joints”, IEEE Trans. Control Syst. Techn., 22:2 (2014), 809–815 | DOI

[10] F. Cao, J. Liu, “An adaptive iterative learning algorithm for boundary control of a coupled ODE-PDE two-link rigid-flexible manipulator”, J. Franklin Inst., 354:1 (2017), 277–297 | DOI | MR | Zbl

[11] F. Ornelas-Tellez, E. N. Sanchez, A. G. Loukianov, “Inverse optimal control for discrete-time nonlinear systems via passivation”, Optimal Control Appl. Methods, 35:1 (2014), 110–126 | DOI | MR | Zbl

[12] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989

[13] Yu. A. Arkhangelskii, Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977

[14] Yu. F. Dolgii, A. N. Sesekin, I. A. Chupin, “Impulse control of the manipulation robot”, Ural Mathematical Journal, 5:2 (2019), 13–20 | DOI | MR | Zbl

[15] I. A. Chupin, Yu. F. Dolgii, A. N. Sesekin, “The controlling of robot with three degrees of freedom”, AIP Conference Proceedings, 2312:1 (2020), 070030 | DOI

[16] A. I. Lure, Analiticheskaya mekhanika, Fizmatgiz, M., 1961

[17] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1969

[18] E. Dzh. Raus, Dinamika sistemy tverdykh tel, Nauka, M., 1983

[19] I. A. Krylov, F. L. Chernousko, “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1132–1139 | MR | Zbl