Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_56_a7, author = {V. N. Ushakov and A. V. Ushakov}, title = {On targeting an integral funnel of control system at a target set in the phase space}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {79--101}, publisher = {mathdoc}, volume = {56}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/} }
TY - JOUR AU - V. N. Ushakov AU - A. V. Ushakov TI - On targeting an integral funnel of control system at a target set in the phase space JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 79 EP - 101 VL - 56 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/ LA - ru ID - IIMI_2020_56_a7 ER -
%0 Journal Article %A V. N. Ushakov %A A. V. Ushakov %T On targeting an integral funnel of control system at a target set in the phase space %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 79-101 %V 56 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/ %G ru %F IIMI_2020_56_a7
V. N. Ushakov; A. V. Ushakov. On targeting an integral funnel of control system at a target set in the phase space. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 79-101. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/
[1] Kurzhanski A.B., Control and observation under uncertainty, Nauka, M., 1977
[2] Kurzhanski A.B., Selected works, Moscow State University, M., 2009
[3] Kurzhanski A.B., Mesyats A.I., “Control of ellipsoidal trajectories: theory and numerical results”, Computational Mathematics and Mathematical Physics, 54:3 (2014), 418–428 | DOI | DOI | MR | Zbl
[4] Chernousko F.L., Melikyan A.A., Game problems of control and search, Nauka, M., 1978 | MR
[5] Chernousko F.L., Evaluation of phase state of dynamical systems, Nauka, M., 1988
[6] Nikolskii M.S., “A method of approximating an attainable set for a differential inclusion”, USSR Computational Mathematics and Mathematical Physics, 28:4 (1988), 192–194 | DOI | MR
[7] Gusev M.I., Zykov I.V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proceedings of the Steklov Institute of Mathematics, 300, suppl. 1 (2018), 114–125 | DOI | DOI | MR
[8] Filippova T.F., “External estimates for reachable sets of a control system with uncertainty and combined nonlinearity”, Proceedings of the Steklov Institute of Mathematics, 301, suppl. 1 (2018), 32–43 | DOI | DOI | MR
[9] Ushakov A.V., “On one version of approximate permitting control calculation in a problem of approaching”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 4, 94–107 (in Russian) | DOI | Zbl
[10] Ushakov V.N., Ukhobotov V.I., Ushakov A.V., Parshikov G.V., “On solving approach problems for control systems”, Proceedings of the Steklov Institute of Mathematics, 291 (2015), 263–278 | DOI | DOI | MR | Zbl
[11] Ushakov V.N., Ershov A.A., “On the solution of control problems with fixed terminal time”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:4 (2016), 543–564 (in Russian) | DOI | MR | Zbl
[12] Khripunov A.P., Construction of attainability domains and stable bridges in nonlinear control problems, Cand. Sci. (Phys.-Math.) Dissertation, Yekaterinburg, 1992, 400 pp. (In Russian)
[13] Ershov A.A., Ushakov V.N., “An approach problem for a control system with an unknown parameter”, Sbornik: Mathematics, 208:9 (2017), 1312–1352 | DOI | DOI | MR | Zbl
[14] Panasyuk A.I., “Accessibility sets of differential inclusions in a closed domain”, Mathematical Notes of the Academy of Sciences of the USSR, 50:3 (1991), 956–961 | DOI | MR | MR | Zbl | Zbl
[15] Lotov A.V., “A numerical method for constructing sets of attainability for linear controlled systems with phase constraints”, USSR Computational Mathematics and Mathematical Physics, 15 (1975), 63–74 | DOI | MR | MR | Zbl
[16] Polyak B.T., Sherbakov P.S., “Reachability and attraction domains for linear systems with bounded control: a characterization via invariant ellipsoids”, Stokhasticheskaya Optimizatsiya v Informatike, 4 (2008), 3–23 (in Russian)
[17] Kozlov A.A., “The criterion of uniform global attainability of periodic systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:2 (2020), 221–236 (in Russian) | DOI | MR