On targeting an integral funnel of control system at a target set in the phase space
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 79-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A control system in finite-dimensional Euclidean space is considered. On a given time interval, we investigate the problem of constructing an integral funnel for which a section corresponding to the last time moment of interval is equal to a target set in a phase space. Since the exact solution of such a funnel is possible only in rare cases, the question of the approximate construction of an integral funnel is being studied. The research was performed using computing resources of the collective use center of IMM UB RAS “Supercomputer center of IMM UB RAS”.
Keywords: control, control system, differential inclusion, target set, phase space, approximating system.
@article{IIMI_2020_56_a7,
     author = {V. N. Ushakov and A. V. Ushakov},
     title = {On targeting an integral funnel of control system at a target set in the phase space},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {79--101},
     publisher = {mathdoc},
     volume = {56},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. V. Ushakov
TI  - On targeting an integral funnel of control system at a target set in the phase space
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 79
EP  - 101
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/
LA  - ru
ID  - IIMI_2020_56_a7
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. V. Ushakov
%T On targeting an integral funnel of control system at a target set in the phase space
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 79-101
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/
%G ru
%F IIMI_2020_56_a7
V. N. Ushakov; A. V. Ushakov. On targeting an integral funnel of control system at a target set in the phase space. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 79-101. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a7/

[1] Kurzhanski A.B., Control and observation under uncertainty, Nauka, M., 1977

[2] Kurzhanski A.B., Selected works, Moscow State University, M., 2009

[3] Kurzhanski A.B., Mesyats A.I., “Control of ellipsoidal trajectories: theory and numerical results”, Computational Mathematics and Mathematical Physics, 54:3 (2014), 418–428 | DOI | DOI | MR | Zbl

[4] Chernousko F.L., Melikyan A.A., Game problems of control and search, Nauka, M., 1978 | MR

[5] Chernousko F.L., Evaluation of phase state of dynamical systems, Nauka, M., 1988

[6] Nikolskii M.S., “A method of approximating an attainable set for a differential inclusion”, USSR Computational Mathematics and Mathematical Physics, 28:4 (1988), 192–194 | DOI | MR

[7] Gusev M.I., Zykov I.V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proceedings of the Steklov Institute of Mathematics, 300, suppl. 1 (2018), 114–125 | DOI | DOI | MR

[8] Filippova T.F., “External estimates for reachable sets of a control system with uncertainty and combined nonlinearity”, Proceedings of the Steklov Institute of Mathematics, 301, suppl. 1 (2018), 32–43 | DOI | DOI | MR

[9] Ushakov A.V., “On one version of approximate permitting control calculation in a problem of approaching”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 4, 94–107 (in Russian) | DOI | Zbl

[10] Ushakov V.N., Ukhobotov V.I., Ushakov A.V., Parshikov G.V., “On solving approach problems for control systems”, Proceedings of the Steklov Institute of Mathematics, 291 (2015), 263–278 | DOI | DOI | MR | Zbl

[11] Ushakov V.N., Ershov A.A., “On the solution of control problems with fixed terminal time”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:4 (2016), 543–564 (in Russian) | DOI | MR | Zbl

[12] Khripunov A.P., Construction of attainability domains and stable bridges in nonlinear control problems, Cand. Sci. (Phys.-Math.) Dissertation, Yekaterinburg, 1992, 400 pp. (In Russian)

[13] Ershov A.A., Ushakov V.N., “An approach problem for a control system with an unknown parameter”, Sbornik: Mathematics, 208:9 (2017), 1312–1352 | DOI | DOI | MR | Zbl

[14] Panasyuk A.I., “Accessibility sets of differential inclusions in a closed domain”, Mathematical Notes of the Academy of Sciences of the USSR, 50:3 (1991), 956–961 | DOI | MR | MR | Zbl | Zbl

[15] Lotov A.V., “A numerical method for constructing sets of attainability for linear controlled systems with phase constraints”, USSR Computational Mathematics and Mathematical Physics, 15 (1975), 63–74 | DOI | MR | MR | Zbl

[16] Polyak B.T., Sherbakov P.S., “Reachability and attraction domains for linear systems with bounded control: a characterization via invariant ellipsoids”, Stokhasticheskaya Optimizatsiya v Informatike, 4 (2008), 3–23 (in Russian)

[17] Kozlov A.A., “The criterion of uniform global attainability of periodic systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:2 (2020), 221–236 (in Russian) | DOI | MR