Lyapunov, Perron and upper-limit stability properties of autonomous differential systems
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 63-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a singular point of an autonomous differential system, the natural concepts of its Perron and upper-limit stability are defined, reminiscent of Lyapunov stability. Numerous varieties of them are introduced: from asymptotic and global stability to complete and total instability. Their logical connections with each other are investigated: cases of their coincidence are revealed and examples of their possible differences are given. The invariance of most of these properties with respect to the narrowing of the phase region of the system is established.
Keywords: differential equation, autonomous system, Lyapunov stability, Perron stability, upper-limit stability.
@article{IIMI_2020_56_a6,
     author = {I. N. Sergeev},
     title = {Lyapunov, {Perron} and upper-limit stability properties of autonomous differential systems},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {63--78},
     publisher = {mathdoc},
     volume = {56},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a6/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Lyapunov, Perron and upper-limit stability properties of autonomous differential systems
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 63
EP  - 78
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a6/
LA  - ru
ID  - IIMI_2020_56_a6
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Lyapunov, Perron and upper-limit stability properties of autonomous differential systems
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 63-78
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a6/
%G ru
%F IIMI_2020_56_a6
I. N. Sergeev. Lyapunov, Perron and upper-limit stability properties of autonomous differential systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 63-78. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a6/

[1] Lyapunov A. M., General problem of motion stability, GITTL, M.–L., 1950 | MR

[2] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, Gostekhizdat, M., 1949 | MR

[3] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problem of stability, Nauka, M., 1966

[4] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, M., 1967 | MR

[5] Filippov A. F., Introduction to the theory of differential equations, Editorial URSS, M., 2004

[6] Izobov N. A., Introduction to the theory of Lyapunov exponents, Belarusian State University, Minsk, 2006

[7] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Math. Z., 31:1 (1930), 748–766 (in German) | DOI | MR | Zbl

[8] Sergeev I. N., “Determination of Perron stability and its relationship with Lyapunov stability”, Differentsial'nye Uravneniya, 54:6 (2018), 855–856 (in Russian) | DOI

[9] Sergeev I. N., “On the study of the Perron stability of one-dimensional and autonomous differential systems”, Differentsial'nye Uravneniya, 54:11 (2018), 1561–1562 (in Russian) | DOI

[10] Sergeev I. N., “Investigation of Perron stability of linear differential systems”, Differentsial'nye Uravneniya, 54:11 (2018), 1571–1572 (in Russian) | DOI

[11] Sergeev I. N., “On study of the Perron and Lyapunov stability properties in the first approximation”, Differentsial'nye Uravneniya, 55:6 (2019), 897–899 (in Russian) | DOI

[12] Bondarev A. A., “One example of an unstable system”, Differentsial'nye Uravneniya, 55:6 (2019), 899 (in Russian) | DOI

[13] Sergeev I. N., “On the dependence and independence of the Perron and Lyapunov stability properties on the phase region of the system”, Differentsial'nye Uravneniya, 55:11 (2019), 1572–1573 (in Russian) | DOI

[14] Sergeev I. N., “Some features of the Perron and Lyapunov stability properties of autonomous systems”, Differentsial'nye Uravneniya, 56:6 (2020), 830–831 (in Russian) | DOI

[15] Sergeev I. N., “Determination of upper-limit stability and its relationship with Lyapunov and Perron stability”, Differentsial'nye Uravneniya, 56:11 (2020), 1556–1557 (in Russian) | DOI

[16] Sergeev I. N., “Perron stability and its study at the first approximation”, Doklady Mathematics, 99:3 (2019), 252–254 | DOI | DOI | Zbl

[17] Sergeev I. N., “Definition and some properties of Perron stability”, Differential Equations, 55:5 (2019), 620–630 | DOI | DOI | Zbl

[18] Sergeev I. N., “Dependence and independence of the Perron and Lyapunov stability properties on the system phase domain”, Differential Equations, 55:10 (2019), 1294–1303 | DOI | DOI | Zbl

[19] Sergeev I. N., “Study the Perron and Lyapunov stability properties by the first approximation”, Differential Equations, 56:1 (2020), 83–92 | DOI | DOI | Zbl

[20] Bondarev A. A., “An example of complete, but not global Perron instability”, Moscow University Mathematics Bulletin, 2020, no. 6

[21] Sergeev I. N., “Perron stability and simplified Vinograd–Millionshchikov central exponents”, Stability and oscillations of nonlinear control systems — Pyatnitskiy's conference, abstracts of XIV International scientific conference, Institute of Control Sciences of Russian Academy of Sciences, M., 2018, 59 (in Russian)

[22] Sergeev I. N., “Lyapunov and Perron stability of solutions of differential systems”, Modern problems of mathematics and mechanics, abstracts of International conference dedicated to the 80th anniversary of Academician of the Russian Academy of Sciences V. A. Sadovnichy, MAKS Press, M., 2019, 358–361

[23] Sergeev I. N., “Study of the Perron and Lyapunov stability in the first approximation”, Erugin readings — 2019, abstracts of XIX International scientific conference on differential equations, v. 1, Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 2019, 51–52 (in Russian)

[24] Sergeev I. N., “On the Perron and Lyapunov stability of solutions”, Erugin readings — 2019, abstracts of XIX International scientific conference on differential equations, v. 1, Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 2019, 52–57 (in Russian)

[25] Sergeev I. N., “Perron and Lyapunov stability properties and their investigation by the first approximation”, Autumn mathematical readings in Adygea: abstracts of III International scientific conference, Adyghe State University, Maikop, 2019, 83–86 (in Russian)

[26] Sergeev I. N., “The definition and properties of Perron stability of differential system”, QUALITDE–2019, abstracts of International workshop on the qualitative theory of differential equations, A. Razmadze Math. Inst. of I. Javakhishvili Tbilisi St. University, Tbilisi, Georgia, 2019, 162–166

[27] Sergeev I. N., “Indistinguishability of some Lyapunov, Perron, and upper-limit stability properties of differential systems”, Control theory and mathematical modelling, abstracts of All-Russian conference with international participation dedicated to prof. N. V. Azbelev and prof. E. L. Tonkov, Udmurt State University, Izhevsk, 2020, 118–120 (in Russian)

[28] Oxtoby J. C., Measure and category, Springer-Verlag, New York, 1980 | MR | Zbl