Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the finite-dimensional Euclidean space, a task of pursuing two evaders by a group of pursuers is considered, described by a system of the form $$D^{(\alpha)} z_{ij} = a z_{ij} + u_i - v,$$ where $D^{(\alpha)}f$ is the Caputo fractional derivative of order $\alpha \in (0, 1)$ of the function $f$, and $a$ is a real number. It is assumed that all evaders use the same control and that the evaders do not leave a convex cone with vertex at the origin. The aim of the group of pursuers is to capture two evaders. The pursuers use program counterstrategies based on information about the initial positions and the control history of the evaders. The set of admissible controls is a unit ball centered at zero, the target sets are the origins. In terms of initial positions and game parameters, sufficient conditions for the capture are obtained. Using the method of resolving functions as a basic research tool, we derive sufficient conditions for the solvability of the approach problem in some guaranteed time.
Keywords: differential game, pursuer, evader, fractional derivatives, phase restrictions.
@article{IIMI_2020_56_a5,
     author = {N. N. Petrov and A. I. Machtakova},
     title = {Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {56},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a5/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - A. I. Machtakova
TI  - Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 50
EP  - 62
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a5/
LA  - ru
ID  - IIMI_2020_56_a5
ER  - 
%0 Journal Article
%A N. N. Petrov
%A A. I. Machtakova
%T Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 50-62
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a5/
%G ru
%F IIMI_2020_56_a5
N. N. Petrov; A. I. Machtakova. Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 50-62. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a5/

[1] Pshenichnyi B. N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 | DOI | MR

[2] Chernous'ko F. L., “A problem of evasion from many pursuers”, Journal of Applied Mathematics and Mechanics, 40:1 (1976), 11–20 | DOI | Zbl

[3] Rikhsiev B. B., Differential games with simple mothion, Fan, Tashkent, 1989 | MR

[4] Chikrii A. A., Conflict-controlled processes, Kluwer Acad. Publ., Boston–London–Dordrecht, 1997 | MR | Zbl

[5] Grigorenko N. L., Mathematical methods of control a few dynamic processes, Moscow State University, M., 1990

[6] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[7] Kumkov S. S., Menec S. L., Patsko V. S., “Zero-sum pursuit-evasion differential games with many objects: survey of publications”, Dynamic Games and Applications, 7:4 (2017), 609–633 | DOI | MR | Zbl

[8] Petrov N. N., Petrov N. Nikandr., “On the differential game “cossacks–robbers””, Differ. Uravn., 19:8 (1983), 1366–1374 (in Russian) | MR | Zbl

[9] Prokopovich P. V., Chikrii A. A., “A linear evasion problem for interacting groups of objects”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 583–591 | DOI | MR | Zbl

[10] Bannikov A. S., “A nonstationary group pursuit problem”, Russian Mathematics, 53:5 (2009), 1–9 | DOI | MR | Zbl

[11] Alias I. A., Ibragimov G. I., Rakmanov A., “Evasion differential games of infinitely many evaders from infinitely many pursuers in Hilbert space”, Dynamic Games and Applications, 7:3 (2017), 347–359 | DOI | MR | Zbl

[12] Satimov N., Mamatov M. S., “On problems of pursuit and evasion away from meeting in differential games between the group of pursuers and evaders”, Doklady Akademii Nauk Uzbekskoi SSR, 4 (1983), 3–6 (in Russian) | Zbl

[13] Petrov N. N., Vagin D. A., “A problem of group pursuit with phase constraints”, Journal of Applied Mathematics and Mechanics, 66:2 (2002), 225–232 | DOI | MR | Zbl

[14] Machtakova A. I., “Persecution of rigidly coordinated evaders in a linear problem with fractional derivatives and a simple matrix”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 45–54 | DOI | MR | Zbl

[15] Blagodatskikh A. I., “Multiple capture of rigidly coordinated evaders”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 46–57 (in Russian) | DOI | MR | Zbl

[16] Petrov N. N., Solov'eva N. A., “Problem of pursuit of a group of coordinated evaders in linear recurrent differential games”, Journal of Computer and System Sciences International, 51 (2012), 770–778 | DOI | MR | Zbl

[17] Petrov N. N., Prokopenko V. A., “One problem of pursuit of a group of evader”, Differ. Uravn., 23:4 (1987), 725–726 (in Russian) | MR | Zbl

[18] Petrov N. N., Narmanov A .Ya., “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 193–198 (in Russian) | DOI | MR | Zbl

[19] Petrov N. N., Solov'eva N. A., “Multiple capture of given number of evaders in linear recurrent differential games”, Journal of Optimization Theory and Applications, 182:1 (2019), 417–429 | DOI | MR | Zbl

[20] Makkapati V. R., Tsiotras P., “Optimal evading strategies and task allocation in multi-player pursuit–evasion problems”, Dynamic Games and Applications, 9:4 (2019), 1168–1187 | DOI | MR | Zbl

[21] Qadir M. Z., Piao S., Jiang H., Souidi M. E. H., “A novel approach for multi-agent cooperative pursuit to capture grouped evaders”, Journal of Supercomputing, 76 (2020), 3416–3426 | DOI

[22] Liang L., Deng F., Peng Z., Li X., Zha W., “A differential game for cooperative target defense”, Automatica, 102 (2019), 58–71 | DOI | MR | Zbl

[23] Blagodatskikh A. I., “Problems of group pursuit with equal opportunities in a presence of defenders for an evader”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, no. 2(46), 13–20 (in Russian) | Zbl

[24] Grigorenko N. L., “Pursuit of two evaders by several controlled objects”, Sov. Math., Dokl., 31 (1985), 550–553 | MR | Zbl

[25] Vinogradova M. N., “On the capture of two evaders in a non-stationary pursuit–evasion problem with phase restrictions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:1 (2015), 12–20 (in Russian) | DOI | Zbl

[26] Vinogradova M. N., Petrov N. N., Solov'eva N. A., “Capture of two cooperative evaders in linear recurrent differential games”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 29, no. 1, 2013, 41–48 (in Russian)

[27] Petrov N. N., “Controllability of autonomous systems”, Differential Equations, 4:4 (1968), 606–617 (in Russian) | Zbl

[28] Chikrii A. A., Matichin I. I., “On an analogue of the Cauchy formula for linear systems of any fractional order”, Reports of the National Academy of Sciences of Ukraine, 2007, no. 1, 50–55 (in Russian) | Zbl

[29] Popov A. Yu., Sedletskii A. M., “Distribution of roots of Mittag–Leffler functions”, Journal of Mathematical Sciences, 190:2 (2013), 209–409 | DOI | MR

[30] Petrov N. N., “One problem of group pursuit with fractional derivatives and phase constraints”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:1 (2017), 54–59 (in Russian) | DOI | MR | Zbl