Distributed calculations in conjugated problems of interaction between gas flows and deformable bodies
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the mathematical modeling of conjugated problems of gas dynamics and mechanics of a deformable solid body within the partitioned approach, each of the physical problems is solved independently using the appropriate software. In the article, we consider a distributed software model built on the basis of components approach that makes it possible to connect an arbitrary number of components related to physical problems. The mathematical formulation of the problems of gas dynamics, mechanics of a deformable rigid body, as well as the boundary conditions for the conjugation of physical regions are given. The programming model is based on the ZeroC Ice middleware, which implements a distributed client–server model. As an example, we consider the problems of interaction of a shock wave with an elastically deformable obturator, consisting of two thin plates, as well as the interaction of a hollow deformable cylinder with a flow of gas. The results of numerical solution are given.[20pt] The research was performed using computing resources of the collective use center of IMM UB RAS “Supercomputer center of IMM UB RAS”.
Keywords: conjugate problem, two-sided coupling, distributed calculations, numerical modeling.
@article{IIMI_2020_56_a3,
     author = {I. M. Kuz'min and L. E. Tonkov},
     title = {Distributed calculations in conjugated problems of interaction between gas flows and deformable bodies},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {56},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a3/}
}
TY  - JOUR
AU  - I. M. Kuz'min
AU  - L. E. Tonkov
TI  - Distributed calculations in conjugated problems of interaction between gas flows and deformable bodies
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 30
EP  - 40
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a3/
LA  - ru
ID  - IIMI_2020_56_a3
ER  - 
%0 Journal Article
%A I. M. Kuz'min
%A L. E. Tonkov
%T Distributed calculations in conjugated problems of interaction between gas flows and deformable bodies
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 30-40
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a3/
%G ru
%F IIMI_2020_56_a3
I. M. Kuz'min; L. E. Tonkov. Distributed calculations in conjugated problems of interaction between gas flows and deformable bodies. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 30-40. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a3/

[1] Farhat C., Lesoinne M., “Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems”, Computer Methods in Applied Mechanics and Engineering, 182 (2000), 499–515 | DOI | Zbl

[2] Ahrem R., “Multidisciplinary simulations with the coupling library MpCCI”, Proceedings in Applied Mathematics and Mechanics, 1:1 (2002), 39–42 | DOI | Zbl

[3] Breuer M., De Nayer G., M{ü}nsch M., Gallinger T., W{ü}chner R., “Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation”, Journal of Fluids and Structures, 29 (2012), 107–130 | DOI

[4] Bungartz H.-J., Benk J., Gatzhammer B., Mehl M., Neckel T., “Partitioned simulation of fluid-structure interaction on Cartesian grids”, Fluid Structure Interaction, v. II, Springer, Berlin, 2010, 255–284 | DOI | MR | Zbl

[5] Henning M., “A new approach to object-oriented middleware”, IEEE Internet Computing, 8:1 (2004), 66–75 | DOI

[6] Kopysov S. P., Kuz'min I. M., Nedozhogin N. S., Novikov A. K., Rychkov V. N., Sagdeeva Yu. A., Tonkov L. E., “Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio”, Computer Research and Modeling, 6:1 (2014), 79–97 | DOI | MR

[7] Giordano J., Jourdan G., Burtschell Y., Medale M., Zeitoun D. E., Houas L., “Shock wave impacts on deforming panel, an application of fluid-structure interaction”, Shock Waves, 14:1–2 (2005), 103–110 | DOI | Zbl

[8] Kopysov S. P., Kuz'min I. M., Tonkov L. E., “Modeling of interaction of a supersonic stream and the deformable panel in a shock tube”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 2, 156–165 | DOI | Zbl

[9] Greenshields C. J., Weller H. G., Gasparini L., Reese J. M., “Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows”, International Journal for Numerical Methods in Fluids, 63:1 (2010), 1–21 | DOI | MR | Zbl