Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_56_a2, author = {A. A. Kilin and E. M. Artemova}, title = {Stability of regular vortex polygons in {Bose--Einstein} condensate}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {20--29}, publisher = {mathdoc}, volume = {56}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/} }
TY - JOUR AU - A. A. Kilin AU - E. M. Artemova TI - Stability of regular vortex polygons in Bose--Einstein condensate JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 20 EP - 29 VL - 56 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/ LA - ru ID - IIMI_2020_56_a2 ER -
%0 Journal Article %A A. A. Kilin %A E. M. Artemova %T Stability of regular vortex polygons in Bose--Einstein condensate %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 20-29 %V 56 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/ %G ru %F IIMI_2020_56_a2
A. A. Kilin; E. M. Artemova. Stability of regular vortex polygons in Bose--Einstein condensate. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 20-29. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/
[1] Aref H., “Point vortex motions with a center of symmetry”, The Physics of Fluids, 25:12 (1982), 2183–2187 | DOI | MR | Zbl
[2] Borisov A. V., Kilin A. A., Stability of Thomson's configurations of vortices on a sphere, 2005, arXiv: nlin/0503068 [nlin.CD] | MR
[3] Cabral H. E., Boatto S., “Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere”, SIAM Journal on Applied Mathematics, 64:1 (2003), 216–230 | DOI | MR | Zbl
[4] Cabral H. E., Meyer K. R., Schmidt D. S., “Stability and bifurcations for the $N + 1$ vortex problem on the sphere”, Regular and Chaotic Dynamics, 8:3 (2003), 259–282 | DOI | MR | Zbl
[5] Fetter A. L., Svidzinsky A. A., “Vortices in a trapped dilute Bose–Einstein condensate”, Journal of Physics: Condensed Matter, 13:12 (2001), R135–R194 | DOI
[6] Havelock T. H. LII, “The stability of motion of rectilinear vortices in ring formation”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 11:70 (1931), 617–633 | DOI
[7] Koukouloyannis V., Voyatzis G., Kevrekidis P. G., “Dynamics of three noncorotating vortices in Bose–Einstein condensates”, Physical Review E, 89:4 (2014) | DOI
[8] Kurakin L. G., Lysenko I. A., “On the stability of the orbit and the invariant set of Thomson's vortex polygon in a two-fluid plasma”, Russian Journal of Nonlinear Dynamics, 16:1 (2020), 3–11 | DOI | MR | Zbl
[9] Kurakin L. G., Ostrovskaya I. V., “On stability of Thomson's vortex $N$-gon in the geostrophic model of the point Bessel vortices”, Regular and Chaotic Dynamics, 22:7 (2017), 865–879 | DOI | MR | Zbl
[10] Kurakin L. G., Yudovich V. I., “The stability of stationary rotation of a regular vortex polygon”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12:3 (2002), 574–595 | DOI | MR | Zbl
[11] Laurent-Polz F., “Point vortices on a rotating sphere”, Regular and Chaotic Dynamics, 10:1 (2005), 39–58 | DOI | MR | Zbl
[12] Middelkamp S., Kevrekidis P. G., Frantzeskakis D. J., Carretero-González R., Schmelcher P., “Bifurcations, stability, and dynamics of multiple matter-wave vortex states”, Physical Review A, 82:1 (2010) | DOI
[13] Middelkamp S., Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Carretero-González R., Schmelcher P., Hall D. S., “Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates”, Physical Review A, 84:1 (2011) | DOI | MR
[14] Navarro R., Carretero-González R., Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Ray M. W., Altunta{ş} E., Hall D. S., “Dynamics of a few corotating vortices in Bose–Einstein condensates”, Physical Review Letters, 110:22 (2013) | DOI
[15] Ryabov P. E., Sokolov S. V., Phase topology of two vortices of the identical intensities in Bose–Einstein condensate, 2018, arXiv: 1812.11749v1 | MR
[16] Thomson J. J., A treatise on the motion of vortex rings: an essay to which the Adams prize was adjudged in 1882 in the University of Cambridge, Macmillan, 1883 | Zbl
[17] Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Carretero-González R., Schmelcher P., Hall D. S., “Dynamics of vortex dipoles in confined Bose–Einstein condensates”, Physics Letters A, 375:33 (2011), 3044–3050 | DOI
[18] Bogomolov V. A., “Model of oscillations of the centers of action of the atmosphere”, Fizika Atmosfery i Okeana, 15:3 (1979), 243–249 (in Russian)
[19] Borisov A. V., Mamaev I. S., Mathematical methods in the dynamics of vortex structures, Institute of Computer Science, M.–Izhevsk, 2005 | MR
[20] Kurakin L. G., “On the stability of a regular vortex $n$-gon”, Dokl. Ross. Akad. Nauk, 335:6 (1994), 729–731 (in Russian) | Zbl
[21] Kurakin L. G., “Stability, resonances and instability of regular vortex polygons inside a circular region”, Doklady Akademii Nauk, 399:1 (2004), 52–55 (in Russian)
[22] Pitaevski{ĭ} L. P., “Bose–Einstein condensation in magnetic traps. Introduction to the theory”, Physics–Uspekhi, 41:6 (1998), 569–580 | DOI | DOI