Stability of regular vortex polygons in Bose--Einstein condensate
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the stability of rotating regular vortex $N$-gons (Thomson configurations) in a Bose–Einstein condensate in a harmonic trap. The dependence of the rotation velocity $\omega$ of the Thomson configuration around the center of the trap is obtained as a function of the number of vortices $N$ and the radius of the configuration $ R $. The analysis of the stability of motion of such configurations in the linear approximation is carried out. For $N \leqslant 6$, regions of orbital stability of configurations in the parameter space are constructed. It is shown that vortex $N$-gons for $N > 6$ are unstable for any parameters of the system.
Keywords: vortex dynamics, Bose–Einstein condensate, linear stability.
Mots-clés : Thomson configurations
@article{IIMI_2020_56_a2,
     author = {A. A. Kilin and E. M. Artemova},
     title = {Stability of regular vortex polygons in {Bose--Einstein} condensate},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {56},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/}
}
TY  - JOUR
AU  - A. A. Kilin
AU  - E. M. Artemova
TI  - Stability of regular vortex polygons in Bose--Einstein condensate
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 20
EP  - 29
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/
LA  - ru
ID  - IIMI_2020_56_a2
ER  - 
%0 Journal Article
%A A. A. Kilin
%A E. M. Artemova
%T Stability of regular vortex polygons in Bose--Einstein condensate
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 20-29
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/
%G ru
%F IIMI_2020_56_a2
A. A. Kilin; E. M. Artemova. Stability of regular vortex polygons in Bose--Einstein condensate. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 20-29. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a2/

[1] Aref H., “Point vortex motions with a center of symmetry”, The Physics of Fluids, 25:12 (1982), 2183–2187 | DOI | MR | Zbl

[2] Borisov A. V., Kilin A. A., Stability of Thomson's configurations of vortices on a sphere, 2005, arXiv: nlin/0503068 [nlin.CD] | MR

[3] Cabral H. E., Boatto S., “Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere”, SIAM Journal on Applied Mathematics, 64:1 (2003), 216–230 | DOI | MR | Zbl

[4] Cabral H. E., Meyer K. R., Schmidt D. S., “Stability and bifurcations for the $N + 1$ vortex problem on the sphere”, Regular and Chaotic Dynamics, 8:3 (2003), 259–282 | DOI | MR | Zbl

[5] Fetter A. L., Svidzinsky A. A., “Vortices in a trapped dilute Bose–Einstein condensate”, Journal of Physics: Condensed Matter, 13:12 (2001), R135–R194 | DOI

[6] Havelock T. H. LII, “The stability of motion of rectilinear vortices in ring formation”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 11:70 (1931), 617–633 | DOI

[7] Koukouloyannis V., Voyatzis G., Kevrekidis P. G., “Dynamics of three noncorotating vortices in Bose–Einstein condensates”, Physical Review E, 89:4 (2014) | DOI

[8] Kurakin L. G., Lysenko I. A., “On the stability of the orbit and the invariant set of Thomson's vortex polygon in a two-fluid plasma”, Russian Journal of Nonlinear Dynamics, 16:1 (2020), 3–11 | DOI | MR | Zbl

[9] Kurakin L. G., Ostrovskaya I. V., “On stability of Thomson's vortex $N$-gon in the geostrophic model of the point Bessel vortices”, Regular and Chaotic Dynamics, 22:7 (2017), 865–879 | DOI | MR | Zbl

[10] Kurakin L. G., Yudovich V. I., “The stability of stationary rotation of a regular vortex polygon”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12:3 (2002), 574–595 | DOI | MR | Zbl

[11] Laurent-Polz F., “Point vortices on a rotating sphere”, Regular and Chaotic Dynamics, 10:1 (2005), 39–58 | DOI | MR | Zbl

[12] Middelkamp S., Kevrekidis P. G., Frantzeskakis D. J., Carretero-González R., Schmelcher P., “Bifurcations, stability, and dynamics of multiple matter-wave vortex states”, Physical Review A, 82:1 (2010) | DOI

[13] Middelkamp S., Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Carretero-González R., Schmelcher P., Hall D. S., “Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates”, Physical Review A, 84:1 (2011) | DOI | MR

[14] Navarro R., Carretero-González R., Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Ray M. W., Altunta{ş} E., Hall D. S., “Dynamics of a few corotating vortices in Bose–Einstein condensates”, Physical Review Letters, 110:22 (2013) | DOI

[15] Ryabov P. E., Sokolov S. V., Phase topology of two vortices of the identical intensities in Bose–Einstein condensate, 2018, arXiv: 1812.11749v1 | MR

[16] Thomson J. J., A treatise on the motion of vortex rings: an essay to which the Adams prize was adjudged in 1882 in the University of Cambridge, Macmillan, 1883 | Zbl

[17] Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Carretero-González R., Schmelcher P., Hall D. S., “Dynamics of vortex dipoles in confined Bose–Einstein condensates”, Physics Letters A, 375:33 (2011), 3044–3050 | DOI

[18] Bogomolov V. A., “Model of oscillations of the centers of action of the atmosphere”, Fizika Atmosfery i Okeana, 15:3 (1979), 243–249 (in Russian)

[19] Borisov A. V., Mamaev I. S., Mathematical methods in the dynamics of vortex structures, Institute of Computer Science, M.–Izhevsk, 2005 | MR

[20] Kurakin L. G., “On the stability of a regular vortex $n$-gon”, Dokl. Ross. Akad. Nauk, 335:6 (1994), 729–731 (in Russian) | Zbl

[21] Kurakin L. G., “Stability, resonances and instability of regular vortex polygons inside a circular region”, Doklady Akademii Nauk, 399:1 (2004), 52–55 (in Russian)

[22] Pitaevski{ĭ} L. P., “Bose–Einstein condensation in magnetic traps. Introduction to the theory”, Physics–Uspekhi, 41:6 (1998), 569–580 | DOI | DOI