Some questions of differential game theory with phase constraints
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 138-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential game (DG) of guidance-evasion is considered; moreover, its relaxations constructed with due account for priority considerations in the implementation of target set (TS) guidance and phase constraints (PC) validity are considered. We suppose that TS is closed in a natural topology of position space. With respect to the set that defines PC, it is postulated that the sections corresponding to time fixing are closed. For this setting, with the use of program iteration method (PIM), a variant of alternative for some natural (asymmetric) classes of strategies is established. A scheme of relaxation for the game guidance problem with nonclosed (in general case) set defining PC is considered. Under relaxation construction, reasons connected with priority in the implementation of guidance to TS and PC validity are taken into account (the case of asymmetric weakening of conditions of game ending is investigated). A position function is introduced, values of which (with priority correction) play the role of an analogue of least size for neighborhoods of TS and set defining PC under which it is possible to get a guaranteed solution of a relaxed problem of a player interested in approaching with TS while observing PC. It is demonstrated that the value of given function (when fixing the position of the game) is a price of DG for minimax–maximin quality functional which characterizes both the “degree” of approaching with TS and the “degree” of observance of initial PC.
Keywords: alternative, differential game, quasistrategy, program iteration method, relaxation of approach problem.
@article{IIMI_2020_56_a10,
     author = {A. G. Chentsov},
     title = {Some questions of differential game theory with phase constraints},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {138--184},
     publisher = {mathdoc},
     volume = {56},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a10/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Some questions of differential game theory with phase constraints
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 138
EP  - 184
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a10/
LA  - ru
ID  - IIMI_2020_56_a10
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Some questions of differential game theory with phase constraints
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 138-184
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a10/
%G ru
%F IIMI_2020_56_a10
A. G. Chentsov. Some questions of differential game theory with phase constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 138-184. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a10/

[1] Krasovskij N. N., Subbotin A. I., “Alternative for game problems of approach”, Prikl. matematika i mehanika, 34:6 (1970), 1005–1022

[2] Krasovskij N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp. | MR

[3] Kryazhimskii A. V., “To theory of positional differential games guidance-evasion”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR

[4] Chentsov A. G., “About structure of a game guidance problem”, Dokl. AN SSSR, 224:6 (1975), 1272–1275 | MR | Zbl

[5] Chentsov A. G., “To a game guidance problem”, Dokl. AN SSSR, 226:1 (1976), 73–76 | MR | Zbl

[6] Chentsov A. G., “On a game guidance problem with given moment of time”, Mat. sb., 99 (141):3 (1976), 394–420 | MR | Zbl

[7] Chistjakov S. V., “To a solution of game pursuit”, Prikl. matematika i mehanika, 41:5 (1977), 825–832 | MR

[8] Ukhobotov V. I., “Construction of stable bridge for one class of linear games”, Prikl. matematika i mehanika, 41:2 (1977), 358–364 | MR

[9] Chentsov A. G., “About game approach problem with given moment of time”, Izv. AN SSSR. Ser. matematicheskaja, 42:2 (1978), 455–467 | MR | Zbl

[10] Chentsov A.G., “The program iteration method in a game problem of guidance”, Proc. Steklov Inst. Math., 297, Suppl. (2017), 43–61 | DOI | DOI | MR

[11] Chentsov A.G., Khachay D.M., “Relaxation of differential game of guidance-evasion and iteration methods”, Trudy IMM UrO RAN, 18, no. 4, 2018, 246–269 | DOI

[12] Chentsov A., Khachay D., “Program iterations method and relaxation of a pursuit-evasion differential game”, Advanced control techniques in complex engineering systems: Theory and applications, Studies in Systems, Decision and Control, 203, Springer, Cham, 2019, 129–161 | DOI | Zbl

[13] Isaacs R., Differential games, Mir, M., 1967, 480 pp.

[14] Krasovskij N.N., Game problems about meeting of motions, Fizmatlit, M., 1970, 420 pp.

[15] Krasovskij N.N., Control by dynamic system. The problem about minimum of guaranteed result, Nauka, M., 1985, 520 pp.

[16] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkh{ä}user, Basel, 1995 | DOI | MR

[17] Lukojanov N.Ju., Functional equations of Hamilton-Jacobi and control problems with hereditary information, UrFU, Ekaterinburg, 2011, 243 pp.

[18] Chikrii A. A., Conflict-controlled processes, Springer Science and Business Media, Boston–London–Dordrecht, 2013, 424 pp. | MR

[19] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1977, 287 pp. | MR

[20] Subbotin A.I., Minimax inequalities and Hamilton-Jacobi equations, Nauka, M., 1991, 216 pp.

[21] Subbotin A.I., “Extremal strategies in differential games with full memory”, Doklady AN SSSR, 206:3 (1972), 277–280 | Zbl

[22] Krasovskij N.N., “Differential game of guidance-evasion, I”, Izv.AN SSSR. Tehn. kibernetika, 1973, no. 2, 3–18

[23] Krasovskij N.N., “Differential game of guidance-evasion, II”, Izv.AN SSSR. Tehn. kibernetika, 1973, no. 3, 22–42

[24] Fleming W. H., “The convergence problem for differential games”, Journal of Mathematical Analysis and Applications, 3:1 (1961), 102–116 | DOI | MR | Zbl

[25] Fridman A., Differential games, Wiley–Interscience, New York, 1971, 350 pp. | MR

[26] Roxin E., “Axiomatic approach in differential games”, Journal of Optimization Theory and Applications, 3:3 (1969), 153–163 | DOI | MR | Zbl

[27] Elliott R. J., Kalton N. J., “The existence of value in differential games of pursuit and evasion”, Journal of Differential Equations, 12:3 (1972), 504–523 | DOI | MR | Zbl

[28] Ryll-Nardzewski C., “A theory of pursuit and evasion”, Advances in game theory, 52, Princeton University Press, 1964, 113–127 | MR

[29] Elliott R. J., Kalton N. J., The existence of value in differential games, Memoirs of the AMS, 126, American Mathematical Society, Providence, Rhode Island, 1972 https://bookstore.ams.org/memo-1-126/ | MR | Zbl

[30] Chentsov A.G., “Stability iterations and evasion problem with a constraint on the number of switching”, Trudy IMM UrO RAN, 23, no. 2, 2017, 285–302 | DOI

[31] Chentsov A.G., “Stability iterations and evasion problem with a constraint on the number of switching of formed control”, Izvestija instituta matematiki i informatiki Udmurtskogo gosudarstvennogo universiteta, 2017, 17–54 | DOI | Zbl

[32] Varga Dzh., Optimal control of differential and functional equations, Nauka, M., 1977, 624 pp.

[33] Gamkrelidze R.V., Foundations of optimal control, Izd-vo Tbilisskogo universiteta, Tbilisi, 1977, 254 pp.

[34] Kuratovski K., Mostovski A., Set theory, Mir, M., 1970, 416 pp.

[35] D'edonne Zh., Foundations of modern analysis, Mir, M., 1964, 430 pp.

[36] Billingsley P., Convergence of probability measures, Nauka, M., 1977, 352 pp.

[37] Chentsov A.G., “About alternative in class quasistrategies for differential game of guidance-evasion”, Differencial'nye uravnenija, XVI:10 (1980), 1801–1808 | MR | Zbl

[38] Danford N., Shvarc Dzh.T., Linear operators, v. I, General theory, M., 1962, 895 pp.

[39] Engelking R., General topology, Mir, M., 1986, 752 pp. | MR

[40] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[41] Chentsov A. G., The program iteration method for differential game of guidance-evasion, Dep. v VINITI, No 1933–79, Ural'skij politehnicheskij institut im. S. M. Kirova, Sverdlovsk, 1979, 103 pp.