Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a9, author = {A. P. Kolinichenko and L. B. Ryashko}, title = {Analysis of stochastic sensitivity of {Turing} patterns}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {155--163}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/} }
TY - JOUR AU - A. P. Kolinichenko AU - L. B. Ryashko TI - Analysis of stochastic sensitivity of Turing patterns JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 155 EP - 163 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/ LA - en ID - IIMI_2020_55_a9 ER -
%0 Journal Article %A A. P. Kolinichenko %A L. B. Ryashko %T Analysis of stochastic sensitivity of Turing patterns %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 155-163 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/ %G en %F IIMI_2020_55_a9
A. P. Kolinichenko; L. B. Ryashko. Analysis of stochastic sensitivity of Turing patterns. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 155-163. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/
[1] Prigogine I., Nicolis G., “Self-organization in nonequilibrium systems: Towards a dynamics of complexity”, Bifurcation analysis: Principles, applications and synthesis, Springer, Dordrecht, 1985, 3–12 | DOI | MR
[2] Wang X., Lutscher F., “Turing patterns in a predator–prey model with seasonality”, Journal of Mathematical Biology, 78 (2019), 711–737 | DOI | MR | Zbl
[3] Yuan S., Xu Ch., Zhang T., “Spatial dynamics in a predator–prey model with herd behavior”, Chaos, 23:3 (2013), 033102 | DOI | MR | Zbl
[4] Valenti D., Tranchina L., Brai M., Caruso A., Cosentino C., Spagnolo B., “Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)”, Ecological Modeling, 213:3–4 (2008), 449–462 | DOI
[5] Morales M. A., Fernández-Cervantes I., Agustín-Serrano R., Anzo A., Sampedro M. P., “Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics”, The European Physical Journal B, 89 (2016) | DOI | MR
[6] Kuramoto Y., Chemical oscillations, waves, and turbulence, Springer, Berlin–Heidelberg, 1984 | DOI | MR | Zbl
[7] Turing A. M., “The chemical basis of morphogenesis”, Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 237 (1952), 37–72 | DOI | MR | Zbl
[8] Gambino G., Lombardo M. C., Sammartino M., Sciacca V., “Turing pattern formation in the Brusselator system with nonlinear diffusion”, Physical Review E, 88:4 (2013), 042925 | DOI
[9] Kolinichenko A. P., Ryashko L. B., “Modality analysis of patterns in reaction–diffusion systems with random perturbations”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 73–82 | DOI | MR
[10] Zheng Q., Wang Z., Shen J., Iqbal H. M. A., “Turing bifurcation and pattern formation of stochastic reaction–diffusion system”, Advances in Mathematical Physics, 2017 (2017) | DOI | MR
[11] George N. B., Unni V. R., Raghunathan M., Sujith R. I., “Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency”, Journal of Fluid Mechanics, 849 (2018), 615–644 | DOI | MR | Zbl
[12] Biancalani T., Jafarpour F., Goldenfeld N., “Giant amplification of noise in fluctuation-induced pattern formation”, Physical Review Letters, 118:1 (2017), 018101 | DOI
[13] Engblom S., “Stochastic simulation of pattern formation in growing tissue: A multilevel approach”, Bulletin of Mathematical Biology, 81 (2019), 3010–3023 | DOI | MR | Zbl
[14] Horsthemke W., Lefever R., Noise-induced transitions, Springer, Berlin–Heidelberg, 1984 | DOI | MR | Zbl
[15] Anishchenko V. S., Astakhov V. V., Neiman A. B., Vadivasova T. E., Schimansky–Geier L., Nonlinear dynamics of chaotic and stochastic systems, Springer, Berlin–Heidelberg, 2007 | DOI | MR | Zbl
[16] Bashkirtseva I., Ryashko L., Slepukhina E., “Stochastic generation and deformation of toroidal oscillations in neuron model”, International Journal of Bifurcation and Chaos, 28:6 (2018), 1850070 | DOI | MR | Zbl
[17] Ryashko L., “Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis”, Chaos, 28:3 (2018), 033602 | DOI | MR
[18] Bashkirtseva I., Ryashko L., “Stochastic sensitivity and method of principal directions in excitability analysis of the Hodgkin–Huxley model”, International Journal of Bifurcation and Chaos, 29:13 (2019), 1950186 | DOI | MR | Zbl
[19] Kolinichenko A., Ryashko L., “Multistability and stochastic phenomena in the distributed Brusselator model”, Journal of Computational and Nonlinear Dynamics, 15:1 (2020) | DOI
[20] Sauer T., “Numerical solution of stochastic differential equations in finance”, Handbook of Computational Finance, Springer, Berlin–Heidelberg, 2012, 529–550 | DOI | MR | Zbl
[21] Neuenkirch A., Sz{ö}lgyenyi M., Szpruch L., “An adaptive Euler–Maruyama scheme for stochastic differential equations with discontinuous drift and its convergence analysis”, SIAM Journal on Numerical Analysis, 57:1 (2019), 378–403 | DOI | MR | Zbl