Analysis of stochastic sensitivity of Turing patterns
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 155-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a distributed stochastic Brusselator model with diffusion is studied. We show that a variety of stable spatially heterogeneous patterns is generated in the Turing instability zone. The effect of random noise on the stochastic dynamics near these patterns is analysed by direct numerical simulation. Noise-induced transitions between coexisting patterns are studied. A stochastic sensitivity of the pattern is quantified as the mean-square deviation from the initial unforced pattern. We show that the stochastic sensitivity is spatially non-homogeneous and significantly differs for coexisting patterns. A dependence of the stochastic sensitivity on the variation of diffusion coefficients and intensity of noise is discussed.
Keywords: Turing instability, self-organization, stochastic sensitivity.
Mots-clés : reaction–diffusion model
@article{IIMI_2020_55_a9,
     author = {A. P. Kolinichenko and L. B. Ryashko},
     title = {Analysis of stochastic sensitivity of {Turing} patterns},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {55},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/}
}
TY  - JOUR
AU  - A. P. Kolinichenko
AU  - L. B. Ryashko
TI  - Analysis of stochastic sensitivity of Turing patterns
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 155
EP  - 163
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/
LA  - en
ID  - IIMI_2020_55_a9
ER  - 
%0 Journal Article
%A A. P. Kolinichenko
%A L. B. Ryashko
%T Analysis of stochastic sensitivity of Turing patterns
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 155-163
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/
%G en
%F IIMI_2020_55_a9
A. P. Kolinichenko; L. B. Ryashko. Analysis of stochastic sensitivity of Turing patterns. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 155-163. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a9/

[1] Prigogine I., Nicolis G., “Self-organization in nonequilibrium systems: Towards a dynamics of complexity”, Bifurcation analysis: Principles, applications and synthesis, Springer, Dordrecht, 1985, 3–12 | DOI | MR

[2] Wang X., Lutscher F., “Turing patterns in a predator–prey model with seasonality”, Journal of Mathematical Biology, 78 (2019), 711–737 | DOI | MR | Zbl

[3] Yuan S., Xu Ch., Zhang T., “Spatial dynamics in a predator–prey model with herd behavior”, Chaos, 23:3 (2013), 033102 | DOI | MR | Zbl

[4] Valenti D., Tranchina L., Brai M., Caruso A., Cosentino C., Spagnolo B., “Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)”, Ecological Modeling, 213:3–4 (2008), 449–462 | DOI

[5] Morales M. A., Fernández-Cervantes I., Agustín-Serrano R., Anzo A., Sampedro M. P., “Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics”, The European Physical Journal B, 89 (2016) | DOI | MR

[6] Kuramoto Y., Chemical oscillations, waves, and turbulence, Springer, Berlin–Heidelberg, 1984 | DOI | MR | Zbl

[7] Turing A. M., “The chemical basis of morphogenesis”, Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 237 (1952), 37–72 | DOI | MR | Zbl

[8] Gambino G., Lombardo M. C., Sammartino M., Sciacca V., “Turing pattern formation in the Brusselator system with nonlinear diffusion”, Physical Review E, 88:4 (2013), 042925 | DOI

[9] Kolinichenko A. P., Ryashko L. B., “Modality analysis of patterns in reaction–diffusion systems with random perturbations”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 73–82 | DOI | MR

[10] Zheng Q., Wang Z., Shen J., Iqbal H. M. A., “Turing bifurcation and pattern formation of stochastic reaction–diffusion system”, Advances in Mathematical Physics, 2017 (2017) | DOI | MR

[11] George N. B., Unni V. R., Raghunathan M., Sujith R. I., “Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency”, Journal of Fluid Mechanics, 849 (2018), 615–644 | DOI | MR | Zbl

[12] Biancalani T., Jafarpour F., Goldenfeld N., “Giant amplification of noise in fluctuation-induced pattern formation”, Physical Review Letters, 118:1 (2017), 018101 | DOI

[13] Engblom S., “Stochastic simulation of pattern formation in growing tissue: A multilevel approach”, Bulletin of Mathematical Biology, 81 (2019), 3010–3023 | DOI | MR | Zbl

[14] Horsthemke W., Lefever R., Noise-induced transitions, Springer, Berlin–Heidelberg, 1984 | DOI | MR | Zbl

[15] Anishchenko V. S., Astakhov V. V., Neiman A. B., Vadivasova T. E., Schimansky–Geier L., Nonlinear dynamics of chaotic and stochastic systems, Springer, Berlin–Heidelberg, 2007 | DOI | MR | Zbl

[16] Bashkirtseva I., Ryashko L., Slepukhina E., “Stochastic generation and deformation of toroidal oscillations in neuron model”, International Journal of Bifurcation and Chaos, 28:6 (2018), 1850070 | DOI | MR | Zbl

[17] Ryashko L., “Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis”, Chaos, 28:3 (2018), 033602 | DOI | MR

[18] Bashkirtseva I., Ryashko L., “Stochastic sensitivity and method of principal directions in excitability analysis of the Hodgkin–Huxley model”, International Journal of Bifurcation and Chaos, 29:13 (2019), 1950186 | DOI | MR | Zbl

[19] Kolinichenko A., Ryashko L., “Multistability and stochastic phenomena in the distributed Brusselator model”, Journal of Computational and Nonlinear Dynamics, 15:1 (2020) | DOI

[20] Sauer T., “Numerical solution of stochastic differential equations in finance”, Handbook of Computational Finance, Springer, Berlin–Heidelberg, 2012, 529–550 | DOI | MR | Zbl

[21] Neuenkirch A., Sz{ö}lgyenyi M., Szpruch L., “An adaptive Euler–Maruyama scheme for stochastic differential equations with discontinuous drift and its convergence analysis”, SIAM Journal on Numerical Analysis, 57:1 (2019), 378–403 | DOI | MR | Zbl