On certain analogues of linkedness and supercompactness
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 113-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Natural generalizations of properties of the family linkedness and the topological space supercompactness are considered. We keep in mind reinforced linkedness when nonemptyness of intersection of preassigned number of sets from a family is postulated. Analogously, supercompactness is modified: it is postulated the existence of an open subbasis for which, from every covering (by sets of the subbasis), it is possible to extract a subcovering with a given number of sets (more precisely, not more than a given number). It is clear that among all families having the reinforced linkedness, one can distinguish families that are maximal in ordering by inclusion. Under natural and (essentially) “minimal” conditions imposed on the original measurable structure, among the mentioned maximal families with reinforced linkedness, ultrafilters are certainly contained. These ultrafilters form subspaces in the sense of natural topologies corresponding conceptually to schemes of Wallman and Stone. In addition, maximal families with reinforced linkedness, when applying topology of the Wallman type, have the above-mentioned property generalizing supercompactness. Thus, an analogue of the superextension of the $T_1$-space is realized. The comparability of “Wallman” and “Stone” topologies is established. As a result, bitopological spaces (BTS) are realized; for these BTS, under equipping with analogous topologies, ultrafilter sets are subspaces. It is indicated that some cases exist when the above-mentioned BTS is nondegenerate in the sense of the distinction for forming topologies. At that time, in the case of “usual” linkedness (this is a particular case of reinforced linkedness), very general classes of spaces are known for which the mentioned BTS are degenerate (the cases when origial set, i. e., “unit” is equipped with an algebra of sets or a topology).
Keywords: maximal linked system, supercompactness, topology, ultrafilter.
@article{IIMI_2020_55_a7,
     author = {A. G. Chentsov},
     title = {On certain analogues of linkedness and supercompactness},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {113--134},
     publisher = {mathdoc},
     volume = {55},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a7/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On certain analogues of linkedness and supercompactness
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 113
EP  - 134
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a7/
LA  - ru
ID  - IIMI_2020_55_a7
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On certain analogues of linkedness and supercompactness
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 113-134
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a7/
%G ru
%F IIMI_2020_55_a7
A. G. Chentsov. On certain analogues of linkedness and supercompactness. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 113-134. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a7/

[1] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR

[2] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl

[3] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[4] Fedorchuk V. V., Filippov V. V., General topology. Basic constructions, Fizmatlit, M., 2006

[5] Chentsov A. G., “Superextension as bitopological space”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 49 (2017), 55–79 (in Russian) | DOI | Zbl

[6] Dvalishvili B. P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, North–Holland, Amsterdam, 2005 | MR | Zbl

[7] Chentsov A. G., “Ultrafilters and maximal linked systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 365–388 (in Russian) | DOI | MR | Zbl

[8] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 1, 2018, 257–272 (in Russian) | DOI

[9] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Mathematical Journal, 3:2 (2017), 100–121 | DOI | MR | Zbl

[10] Chentsov A. G., “Supercompact spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 2, 2019, 240–257 (in Russian) | DOI

[11] Bulinskii A. V., Shiryaev A. N., Theory of random processes, Fizmatlit, M., 2005

[12] Gryzlov A. A., “On convergent sequences and copies of $\beta{N}$ in one compactification of $N$”, XI Prague Symposium on General Topology (Prague, Czech, 2011), 29 pp. | MR

[13] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, no. 3, 10–17 (in Russian) | DOI

[14] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 11–16 (in Russian) | DOI | Zbl

[15] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967 | MR

[16] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972 | DOI | MR | Zbl

[17] Aleksandrov P. S., Introduction to set theory and general topology, Editorial URSS, M., 2004

[18] Arkhangel'skii A. V., “Compactness”, General Topology II, Encyclopaedia Math. Sci., 50, Springer-Verlag, Berlin, 1996, 1–117 | MR

[19] Engelking R., General topology, Państwowe Wydawnictwo Naukowe, Warszawa, 1985 | MR

[20] Chentsov A. G., “To a question on the supercompactness of ultrafilter spaces”, Ural Mathematical Journal, 5:1 (2019), 31–47 | DOI | MR | Zbl

[21] Chentsov A. G., “Ultrafilters and maximal linked systems: basic properties and topological constructions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 86–102 (in Russian) | DOI

[22] Burbaki N., General topology, Nauka, M., 1968