Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a6, author = {P. D. Lebedev and A. A. Uspenskii}, title = {Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {93--112}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/} }
TY - JOUR AU - P. D. Lebedev AU - A. A. Uspenskii TI - Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 93 EP - 112 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/ LA - ru ID - IIMI_2020_55_a6 ER -
%0 Journal Article %A P. D. Lebedev %A A. A. Uspenskii %T Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 93-112 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/ %G ru %F IIMI_2020_55_a6
P. D. Lebedev; A. A. Uspenskii. Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 93-112. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/
[1] Subbotin A. I., Generalized solutions of first order PDEs: the dynamical optimization perspective, Birkhäuser, Boston, 1995 | DOI | MR | MR
[2] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Construction of a minimax solution for an eikonal-type equation”, Proceedings of the Steklov Institute of Mathematics, 263, suppl. 2 (2008), 191–201 | DOI | MR | Zbl
[3] Kruzhkov S. N., “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Mathematics of the USSR–Sbornik, 27:3 (1975), 406–446 | DOI | MR | Zbl
[4] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | MR | Zbl
[5] Kamneva L. V., Patsko V. S., “Construction of the solvability set in differential games with simple motion and nonconvex terminal set”, Proceedings of the Steklov Institute of Mathematics, 301, suppl. 1 (2018), 57–71 | DOI | DOI | MR
[6] Sedykh V. D., “On the topology of wave fronts in spaces of low dimension”, Izvestiya: Mathematics, 76:2 (2012), 375–418 | DOI | DOI | MR | Zbl
[7] Arnold V. I., Singularities of caustics and wave fronts, Springer, Dordrecht, 1990 | DOI | MR
[8] Mestetskii L. M., Continuous morphology of binary images: Figures, skeletons, circulars, Fizmatlit, M., 2009
[9] Siersma D., “Properties of conflict sets in the plane”, Banach Center Publications, 50, 1999, 267–276 | DOI | MR | Zbl
[10] Giblin P. G., “Symmetry sets and medial axes in two and three dimensions”, The Mathematics of Surfaces IX, Springer, London, 2000, 306–321 | DOI | MR | Zbl
[11] Lebedev P. D., Uspenskii A. A., “Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 108–119 (in Russian) | DOI
[12] Rashevskii P. K., A course in differential geometry, URSS, M., 2003 | MR
[13] Uspenskii A. A., Lebedev P. D., “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set”, Automation and Remote Control, 70:7 (2009), 1132–1139 | DOI | MR | Zbl
[14] Lebedev P. D., Uspenskii A. A., “Construction of a solution of a velocity problem in case of violation of the smoothness of the curvature of the target set boarder”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 98–114 | DOI
[15] Uspenskii A. A., “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 21, no. 1, 2015, 250–263 (in Russian)
[16] Lebedev P. D., Uspenskii A. A., “Construction of the optimal result function and dispersing lines in time-optimal problems with a nonconvex target set”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 22, no. 2, 2016, 188–198 (in Russian) | DOI
[17] Uspenskii A. A., Lebedev P. D., “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Vestnik Udmurtskogo Universiteta. Matematika, Mekhanika, Komp'yuternye Nauki, 28:1 (2018), 59–73 | DOI | MR | Zbl
[18] Dem'yanov V. F., Vasil'ev L. V., Nondifferentiable optimization, Springer, New York, 1985 | MR | MR
[19] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Geometry of singular curves for one class of velocity”, Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, no. 3, 157–167 (in Russian)
[20] Lebedev P. D., Uspenskii A. A., Program for constructing wave fronts and functions of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program No 2017662074, October 27, 2017
[21] Giblin P. J., Reeve G., “Centre symmetry sets of families of plane curves”, Demonstratio Mathematica, 48:2, 167–192 | DOI | MR | Zbl