Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 93-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a time-optimal control problem on the plane with a circular vectogram of velocities and a non-convex target set with a boundary having a finite number of points of discontinuity of curvature. We study the problem of identifying and constructing scattering curves that form a singular set of the optimal result function in the case when the points of discontinuity of curvature have one-sided curvatures of different signs. It is shown that these points belong to pseudo-vertices that are characteristic points of the boundary of the target set, which are responsible for the generation of branches of a singular set. The structure of scattering curves and the optimal trajectories starting from them, which fall in the neighborhood of the pseudo-vertex, is investigated. A characteristic feature of the case under study is revealed, consisting in the fact that one pseudo-vertex can generate two different branches of a singular set. The equation of the tangent to the smoothness points of the scattering curve is derived. A scheme is proposed for constructing a singular set, based on the construction of integral curves for first-order differential equations in normal form, the right-hand sides of which are determined by the geometry of the boundary of the target in neighborhoods of the pseudo-vertices. The results obtained are illustrated by the example of solving the control problem when the target set is a one-dimensional manifold.
Keywords: time-optimal problem, dispersing line, curvature, Hamilton–Jacobi equation, singular set
Mots-clés : tangent, pseudo vertex.
@article{IIMI_2020_55_a6,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {93--112},
     publisher = {mathdoc},
     volume = {55},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 93
EP  - 112
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/
LA  - ru
ID  - IIMI_2020_55_a6
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 93-112
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/
%G ru
%F IIMI_2020_55_a6
P. D. Lebedev; A. A. Uspenskii. Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 93-112. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a6/

[1] Subbotin A. I., Generalized solutions of first order PDEs: the dynamical optimization perspective, Birkhäuser, Boston, 1995 | DOI | MR | MR

[2] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Construction of a minimax solution for an eikonal-type equation”, Proceedings of the Steklov Institute of Mathematics, 263, suppl. 2 (2008), 191–201 | DOI | MR | Zbl

[3] Kruzhkov S. N., “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Mathematics of the USSR–Sbornik, 27:3 (1975), 406–446 | DOI | MR | Zbl

[4] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | MR | Zbl

[5] Kamneva L. V., Patsko V. S., “Construction of the solvability set in differential games with simple motion and nonconvex terminal set”, Proceedings of the Steklov Institute of Mathematics, 301, suppl. 1 (2018), 57–71 | DOI | DOI | MR

[6] Sedykh V. D., “On the topology of wave fronts in spaces of low dimension”, Izvestiya: Mathematics, 76:2 (2012), 375–418 | DOI | DOI | MR | Zbl

[7] Arnold V. I., Singularities of caustics and wave fronts, Springer, Dordrecht, 1990 | DOI | MR

[8] Mestetskii L. M., Continuous morphology of binary images: Figures, skeletons, circulars, Fizmatlit, M., 2009

[9] Siersma D., “Properties of conflict sets in the plane”, Banach Center Publications, 50, 1999, 267–276 | DOI | MR | Zbl

[10] Giblin P. G., “Symmetry sets and medial axes in two and three dimensions”, The Mathematics of Surfaces IX, Springer, London, 2000, 306–321 | DOI | MR | Zbl

[11] Lebedev P. D., Uspenskii A. A., “Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 108–119 (in Russian) | DOI

[12] Rashevskii P. K., A course in differential geometry, URSS, M., 2003 | MR

[13] Uspenskii A. A., Lebedev P. D., “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set”, Automation and Remote Control, 70:7 (2009), 1132–1139 | DOI | MR | Zbl

[14] Lebedev P. D., Uspenskii A. A., “Construction of a solution of a velocity problem in case of violation of the smoothness of the curvature of the target set boarder”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 98–114 | DOI

[15] Uspenskii A. A., “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 21, no. 1, 2015, 250–263 (in Russian)

[16] Lebedev P. D., Uspenskii A. A., “Construction of the optimal result function and dispersing lines in time-optimal problems with a nonconvex target set”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 22, no. 2, 2016, 188–198 (in Russian) | DOI

[17] Uspenskii A. A., Lebedev P. D., “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Vestnik Udmurtskogo Universiteta. Matematika, Mekhanika, Komp'yuternye Nauki, 28:1 (2018), 59–73 | DOI | MR | Zbl

[18] Dem'yanov V. F., Vasil'ev L. V., Nondifferentiable optimization, Springer, New York, 1985 | MR | MR

[19] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Geometry of singular curves for one class of velocity”, Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, no. 3, 157–167 (in Russian)

[20] Lebedev P. D., Uspenskii A. A., Program for constructing wave fronts and functions of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program No 2017662074, October 27, 2017

[21] Giblin P. J., Reeve G., “Centre symmetry sets of families of plane curves”, Demonstratio Mathematica, 48:2, 167–192 | DOI | MR | Zbl