Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a4, author = {M. V. Dontsova}, title = {Sufficient conditions of a nonlocal solvability for a system of two quasilinear equations of the first order with constant terms}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {60--78}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a4/} }
TY - JOUR AU - M. V. Dontsova TI - Sufficient conditions of a nonlocal solvability for a system of two quasilinear equations of the first order with constant terms JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 60 EP - 78 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a4/ LA - ru ID - IIMI_2020_55_a4 ER -
%0 Journal Article %A M. V. Dontsova %T Sufficient conditions of a nonlocal solvability for a system of two quasilinear equations of the first order with constant terms %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 60-78 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a4/ %G ru %F IIMI_2020_55_a4
M. V. Dontsova. Sufficient conditions of a nonlocal solvability for a system of two quasilinear equations of the first order with constant terms. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 60-78. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a4/
[1] Repin O. A., “Boundary-value problem with Saigo operators for mixed type equation with fractional derivative”, Russian Mathematics, 62:1 (2018), 70–75 | DOI | MR | Zbl
[2] Glushko A. V., Loginova E. A., Petrova V. E., Ryabenko A. S., “Study of steady-state heat distribution in a plane with a crack in the case of variable internal thermal conductivity”, Computational Mathematics and Mathematical Physics, 55:4 (2015), 690–698 | DOI | DOI | MR | Zbl
[3] Glushko A. V., Ryabenko A. S., Petrova V. E., Loginova E. A., “Heat distribution in a plane with a crack with a variable coefficient of thermal conductivity”, Asymptotic Analysis, 98:4 (2016), 285–307 | DOI | MR | Zbl
[4] Rozhdestvenskii B. L., Yanenko N. N., Systems of quasilinear equations and their applications to gas dynamics, Nauka, M., 1968
[5] Lannes D., The water waves problem: mathematical analysis and asymptotics, AMS, Providence, 2013 | DOI | MR | Zbl
[6] Bressan A., Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem, Oxford University Press, Oxford, 2000 | MR | Zbl
[7] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Partial differential equations of the first order, Lomonosov Moscow State University, M., 1999
[8] Chen G. Q., Wang D. H., “The Cauchy problem for the Euler equations for compressible fluids”, Handbook of Mathematical Fluid Dynamics, v. 1, 2002, 421–543 | DOI | MR | Zbl
[9] Imanaliev M. I., Ved' Yu. A., “First-order partial differential equation with an integral as a coefficient”, Differential Equations, 25:3 (1989), 325–335 | MR | Zbl
[10] Imanaliev M. I., Alekseenko S. N., “On the existence of a smooth bounded solution for a system of two first-order nonlinear partial differential equations”, Doklady Mathematics, 64:1 (2001), 10–15 | MR | MR | Zbl
[11] Imanaliev M. I., Pankov P. S., Alekseenko S. N., “Method of an additional argument”, Vestnik Kazakhskogo Natsional'nogo Universiteta. Ser. Matematika, Mekhanika, Informatika, 2006, no. 1, Spetsial'nyi vypusk, 60–64 (in Russian)
[12] Yuldashev T. K., “On the inverse problem for a quasilinear partial differential equation of the first order”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika. Mekhanika, 2012, no. 2(18), 56–62 (in Russian)
[13] Yuldashev T. K., “The initial value problem for the quasi-linear partial integro-differential equation of higher order with a degenerate kernel”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 116–130 (in Russian) | DOI
[14] Alekseenko S. N., Dontsova M. V., “The investigation of a solvability of the system of equations, describing a distribution of electrons in an electric field of sprite”, Matematicheskii Vestnik Pedvuzov i Universitetov Volgo-Vyatskogo Regiona, 2012, no. 14, 34–41 (in Russian)
[15] Alekseenko S. N., Shemyakina T. A., Dontsova M. V., “Nonlocal solvability conditions for systems of first order partial differential equations”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2013, no. 3(177), 190–201 (in Russian)
[16] Alekseenko S. N., Dontsova M. V., “The solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 18:2 (2016), 115–124 (in Russian) | Zbl
[17] Dontsova M. V., “Nonlocal solvability conditions of the Cauchy problem for a system of first order partial differential equations with continuous and bounded right-hand sides”, Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Ser. Fizika. Matematika, 2014, no. 4, 116–130 (in Russian) | MR | Zbl
[18] Dontsova M. V., “The nonlocal existence of a bounded solution of the Cauchy problem for a system of two first order partial differential equations with continuous and bounded right-hand sides”, Vestnik Tverskogo Gosudarstvennogo Universiteta. Ser. Prikladnaya Matematika, 2014, no. 3, 21–36 (in Russian)
[19] Alekseenko S. N., Dontsova M. V., “The local existence of a bounded solution of the system of equations, describing a distribution of electrons in low-pressure plasma in an electric field of sprite”, Matematicheskii Vestnik Pedvuzov i Universitetov Volgo-Vyatskogo Regiona, 2013, no. 15, 52–59 (in Russian)
[20] Dontsova M. V., “Nonlocal solvability conditions for Cauchy problem for a system of first order partial differential equations with special right-hand sides”, Ufa Mathematical Journal, 6:4 (2014), 68–80 | DOI | MR
[21] Dontsova M. V., “Solvability of Cauchy problem for a system of first order quasilinear equations with right-hand sides $f_1={a_2}u(t,x) + {b_2}(t)v(t,x)$, $f_2={g_2}v(t,x)$”, Ufa Mathematical Journal, 11:1 (2019), 27–41 | DOI | MR
[22] Alekseenko S. N., Dontsova M. V., Pelinovsky D. E., “Global solutions to the shallow water system with a method of an additional argument”, Applicable Analysis, 96:9 (2017), 1444–1465 | DOI | MR | Zbl
[23] Dontsova M. V., “The nonlocal solvability conditions for a system of two quasilinear equations of the first order with absolute terms”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 21:3 (2019), 317–328 (in Russian) | DOI