On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 42-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two-dimensional Shrödinger operator $\widehat H_B+V$ with a homogeneous magnetic field $B\in {\mathbb R}$ and with an electric potential $V$ which belongs to the space $L^p_{\Lambda } ({\mathbb R}^2;{\mathbb R})$ of $\Lambda $ -periodic real-valued functions from the space $L^p_{\mathrm {loc}} ({\mathbb R}^2)$, $p>1$. The magnetic field $B$ is supposed to have the rational flux $\eta =(2\pi )^{-1}Bv(K) \in {\mathbb Q}$ where $v(K)$ denotes the area of the elementary cell $K$ of the period lattice $\Lambda \subset {\mathbb R}^2$. Given $p>1$ and the period lattice $\Lambda $, we prove that in the Banach space $(L^p_{\Lambda } ({\mathbb R}^2;\mathbb R),\| \cdot \| _{L^p(K)})$ there exists a typical set $\mathcal O$ in the sense of Baire (which contains a dense $G_{\delta}$ -set) such that the spectrum of the operator $\widehat H_B+V$ is absolutely continuous for any electric potential $V\in {\mathcal O}$ and for any homogeneous magnetic field $B$ with the rational flux $\eta \in {\mathbb Q}$.
Keywords: two-dimensional Schrödinger operator, periodic electric potential, homogeneous magnetic field, spectrum.
@article{IIMI_2020_55_a3,
     author = {L. I. Danilov},
     title = {On the spectrum of a {Landau} {Hamiltonian} with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {42--59},
     publisher = {mathdoc},
     volume = {55},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 42
EP  - 59
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/
LA  - ru
ID  - IIMI_2020_55_a3
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 42-59
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/
%G ru
%F IIMI_2020_55_a3
L. I. Danilov. On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 42-59. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/