Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a3, author = {L. I. Danilov}, title = {On the spectrum of a {Landau} {Hamiltonian} with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {42--59}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/} }
TY - JOUR AU - L. I. Danilov TI - On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$, JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 42 EP - 59 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/ LA - ru ID - IIMI_2020_55_a3 ER -
%0 Journal Article %A L. I. Danilov %T On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$, %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 42-59 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/ %G ru %F IIMI_2020_55_a3
L. I. Danilov. On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 42-59. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/
[1] Geiler V.A., “The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials”, St. Petersburg Math. J., 3:3 (1992), 489–532 | MR | MR
[2] Danilov L.I., The spectrum of the Dirac operator with periodic potential. VI, Deposited in VINITI 31.12.1996, No 3855-B96, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp. (in Russian)
[3] Filonov N., Sobolev A.V., “Absence of the singular continuous component in spectra of analytic direct integrals”, Journal of Mathematical Sciences (New York), 136:2 (2006), 3826–3831 | DOI | MR | Zbl
[4] Cycon H.L., Froese R.G., Kirsch W., Simon B., Schrödinger operators: With applications to quantum mechanics and global geometry, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | MR
[5] Geiler V.A., Margulos V.A., Chuchaev I.I., “On the structure of the spectrum of three-dimensional periodic Landau operators”, St. Petersburg Math. J., 8:3 (1997), 447–461 | MR | Zbl
[6] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | MR | Zbl
[7] Danilov L.I., “On the spectrum of a two-dimensional Schrödinger operator with a homogeneous magnetic field and a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 51 (2018), 3–41 (in Russian) | DOI | Zbl
[8] Danilov L.I., “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoretical and Mathematical Physics, 202:1 (2020), 41–57 | DOI | MR | Zbl
[9] Birman M.Sh., Suslina T.A., “Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR
[10] Danilov L.I., “The spectrum of the two-dimensional periodic Schrödinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | MR | Zbl
[11] Shterenberg R. G., “Absolute continuity of the spectrum of the two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, Am. Math. Soc. Transl., Ser. 2, 209 (2003), 191–221 | DOI | MR | Zbl
[12] Shterenberg R.G., “Absolute continuity of the spectrum of two-dimensional periodic Schrödinger operators with strongly subordinate magnetic potential”, Journal of Mathematical Sciences (New York), 129:4 (2005), 4087–4109 | DOI | MR | Zbl
[13] Danilov L.I., “On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, no. 1 (29), 49–84 (in Russian)
[14] Birman M.Sh., Suslina T.A., “A periodic magnetic Hamiltonian with a variable metric: The problem of absolute continuity”, St. Petersburg Math. J., 11:2 (2000), 203–232 | MR | Zbl
[15] Kuchment P., Levendorskiî S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl
[16] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl
[17] Danilov L.I., “On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 3–26 (in Russian) | DOI
[18] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York, 1972 | MR | Zbl
[19] Kato T., Perturbation theory for linear operators, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl
[20] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 428 pp. | MR | Zbl
[21] Thomas L.E., “Time dependent approach to scattering from impurities in a crystal”, Communications in Mathematical Physics, 33 (1973), 335–343 | DOI | MR
[22] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975, 361 pp. | MR | Zbl