On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 42-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two-dimensional Shrödinger operator $\widehat H_B+V$ with a homogeneous magnetic field $B\in {\mathbb R}$ and with an electric potential $V$ which belongs to the space $L^p_{\Lambda } ({\mathbb R}^2;{\mathbb R})$ of $\Lambda $ -periodic real-valued functions from the space $L^p_{\mathrm {loc}} ({\mathbb R}^2)$, $p>1$. The magnetic field $B$ is supposed to have the rational flux $\eta =(2\pi )^{-1}Bv(K) \in {\mathbb Q}$ where $v(K)$ denotes the area of the elementary cell $K$ of the period lattice $\Lambda \subset {\mathbb R}^2$. Given $p>1$ and the period lattice $\Lambda $, we prove that in the Banach space $(L^p_{\Lambda } ({\mathbb R}^2;\mathbb R),\| \cdot \| _{L^p(K)})$ there exists a typical set $\mathcal O$ in the sense of Baire (which contains a dense $G_{\delta}$ -set) such that the spectrum of the operator $\widehat H_B+V$ is absolutely continuous for any electric potential $V\in {\mathcal O}$ and for any homogeneous magnetic field $B$ with the rational flux $\eta \in {\mathbb Q}$.
Keywords: two-dimensional Schrödinger operator, periodic electric potential, homogeneous magnetic field, spectrum.
@article{IIMI_2020_55_a3,
     author = {L. I. Danilov},
     title = {On the spectrum of a {Landau} {Hamiltonian} with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {42--59},
     publisher = {mathdoc},
     volume = {55},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 42
EP  - 59
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/
LA  - ru
ID  - IIMI_2020_55_a3
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 42-59
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/
%G ru
%F IIMI_2020_55_a3
L. I. Danilov. On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 42-59. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a3/

[1] Geiler V.A., “The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials”, St. Petersburg Math. J., 3:3 (1992), 489–532 | MR | MR

[2] Danilov L.I., The spectrum of the Dirac operator with periodic potential. VI, Deposited in VINITI 31.12.1996, No 3855-B96, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp. (in Russian)

[3] Filonov N., Sobolev A.V., “Absence of the singular continuous component in spectra of analytic direct integrals”, Journal of Mathematical Sciences (New York), 136:2 (2006), 3826–3831 | DOI | MR | Zbl

[4] Cycon H.L., Froese R.G., Kirsch W., Simon B., Schrödinger operators: With applications to quantum mechanics and global geometry, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | MR

[5] Geiler V.A., Margulos V.A., Chuchaev I.I., “On the structure of the spectrum of three-dimensional periodic Landau operators”, St. Petersburg Math. J., 8:3 (1997), 447–461 | MR | Zbl

[6] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | MR | Zbl

[7] Danilov L.I., “On the spectrum of a two-dimensional Schrödinger operator with a homogeneous magnetic field and a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 51 (2018), 3–41 (in Russian) | DOI | Zbl

[8] Danilov L.I., “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoretical and Mathematical Physics, 202:1 (2020), 41–57 | DOI | MR | Zbl

[9] Birman M.Sh., Suslina T.A., “Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR

[10] Danilov L.I., “The spectrum of the two-dimensional periodic Schrödinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | MR | Zbl

[11] Shterenberg R. G., “Absolute continuity of the spectrum of the two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, Am. Math. Soc. Transl., Ser. 2, 209 (2003), 191–221 | DOI | MR | Zbl

[12] Shterenberg R.G., “Absolute continuity of the spectrum of two-dimensional periodic Schrödinger operators with strongly subordinate magnetic potential”, Journal of Mathematical Sciences (New York), 129:4 (2005), 4087–4109 | DOI | MR | Zbl

[13] Danilov L.I., “On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, no. 1 (29), 49–84 (in Russian)

[14] Birman M.Sh., Suslina T.A., “A periodic magnetic Hamiltonian with a variable metric: The problem of absolute continuity”, St. Petersburg Math. J., 11:2 (2000), 203–232 | MR | Zbl

[15] Kuchment P., Levendorskiî S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[16] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl

[17] Danilov L.I., “On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 3–26 (in Russian) | DOI

[18] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York, 1972 | MR | Zbl

[19] Kato T., Perturbation theory for linear operators, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[20] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 428 pp. | MR | Zbl

[21] Thomas L.E., “Time dependent approach to scattering from impurities in a crystal”, Communications in Mathematical Physics, 33 (1973), 335–343 | DOI | MR

[22] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975, 361 pp. | MR | Zbl