Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a1, author = {A. V. Belyaev and T. V. Perevalova}, title = {Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete {Lotka--Volterra} model}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {19--32}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/} }
TY - JOUR AU - A. V. Belyaev AU - T. V. Perevalova TI - Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka--Volterra model JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 19 EP - 32 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/ LA - ru ID - IIMI_2020_55_a1 ER -
%0 Journal Article %A A. V. Belyaev %A T. V. Perevalova %T Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka--Volterra model %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 19-32 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/ %G ru %F IIMI_2020_55_a1
A. V. Belyaev; T. V. Perevalova. Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka--Volterra model. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 19-32. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/
[1] Neverova G. P., Zhdanova O. L., Ghosh B., Frisman E. Y., “Dynamics of a discrete-time stage-structured predator–prey system with Holling type II response function”, Nonlinear Dynamics, 98:1 (2019), 427–446 | DOI | Zbl
[2] Khan A. Q., “Bifurcations of a two-dimensional discrete-time predator–prey model”, Advances in Difference Equations, 2019 (2019) | DOI | MR
[3] Pal S., Pal N., Chattopadhyay J., “Hunting cooperation in a discrete-time predator–prey system”, International Journal of Bifurcation and Chaos, 28:7 (2018), 1850083 | DOI | MR | Zbl
[4] Zhao M., Li C. P., Wang J. L., “Complex dynamic behaviors of a discrete-time predator–prey system”, Journal of Applied Analysis and Computation, 7:2 (2017), 478–500 | DOI | MR
[5] Saratchandran P. P., Ajithprasad K. C., Harikrishnan K. P., “Numerical exploration of the parameter plane in a discrete predator–prey model”, Ecological Complexity, 21 (2015), 112–119 | DOI
[6] ReniSagayaRaj M., George Maria Selvam A., Dhineshbabu R., “Stability in a discrete nonlinear prey–predator model with functional response”, International Journal of Emerging Technologies in Computational and Applied Sciences, 7:2 (2014), 190–193
[7] ReniSagayaRaj M., George Maria Selvam A., Meganathan M., “Dynamics in a discrete prey–predator system”, International Journal of Engineering Research and Development, 6:5 (2013), 1–5
[8] Elsadany A. A. E., El-Metwally H. A., Elabbasy E. M., Agiza H. N., “Chaos and bifurcation of a nonlinear discrete prey–predator system”, Computational Ecology and Software, 2:3 (2012), 169–180 http://www.iaees.org/publications/journals/ces/articles/2012-2(3)/2012-2(3).asp
[9] Ren J. L., Yu L. P., Siegmund S., “Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response”, Nonlinear Dynamics, 90:1 (2017), 19–41 | DOI | MR | Zbl
[10] Avrutin V., Gardini L., Sushko I., Tramontana F., Continuous and discontinuous piecewise–smooth one–dimensional maps: Invariant sets and bifurcation structures, World Scientific, Singapore, 2019 | DOI | MR | Zbl
[11] Allen L. J. S., Fagan J. F., H{ö}gn{ä}s G., Fagerholm H., “Population extinction in discrete-time stochastic population models with an Allee effect”, Journal of Difference Equations and Applications, 11:4–5 (2005), 273–293 | DOI | MR | Zbl
[12] Bashkirtseva I. A., “Stochastic sensitivity synthesis in discrete-time systems with parametric noise”, IFAC-PapersOnLine, 51:32 (2018), 610–614 | DOI | MR
[13] Bashkirtseva I., Tsvetkov I., “Impact of the parametric noise on map-based dynamical systems”, AIP Conference Proceedings, 2025 (2018), 040004 | DOI | MR
[14] Bashkirtseva I., Ekaterinchuk E., Ryashko L., “Analysis of noise-induced transitions in a generalized logistic model with delay near Neimark–Sacker bifurcation”, Journal of Physics A: Mathematical and Theoretical, 50:27 (2017), 275102 | DOI | MR | Zbl
[15] Bashkirtseva I., Ryashko L., “Noise-induced shifts in the population model with a weak Allee effect”, Physica A: Statistical Mechanics and its Applications, 491 (2018), 28–36 | DOI | MR
[16] Bashkirtseva I., Ryashko L., “Stochastic sensitivity analysis of noise-induced extinction in the Ricker model with delay and Allee effect”, Bulletin of Mathematical Biology, 80:6 (2018), 1596–1614 | DOI | MR | Zbl
[17] Jungeilges J., Ryazanova T., “Transitions in consumption behaviors in a peer-driven stochastic consumer network”, Chaos, Solitons and Fractals, 128 (2019), 144–154 | DOI | MR
[18] Belyaev A. V., Ryazanova T. V., “The stochastic sensitivity function method in analysis of the piecewise-smooth model of population dynamics”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 36–47 | DOI | MR
[19] Belyaev A., Ryazanova T., “Stochastic sensitivity of attractors for a piecewise smooth neuron model”, Journal of Difference Equations and Applications, 25:9–10 (2019), 1468–1487 | DOI | MR | Zbl
[20] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity analysis of the attractors for the randomly forced Ricker model with delay”, Physics Letters A, 378:48 (2014), 3600–3606 | DOI | MR | Zbl
[21] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps”, Chaos, Solitons and Fractals, 126 (2019), 78–84 | DOI | MR
[22] Zhao Ming, Xuan Zuxing, Li Cuiping, “Dynamics of a discrete-time predator-prey system”, Advances in Difference Equations, 2016:1 (2016) | DOI | MR
[23] Bischi G-I., Stefanini L., Gardini L., “Synchronization, intermittency and critical curves in a duopoly game”, Mathematics and Computers in Simulation, 44:6 (1998), 559–585 | DOI | MR | Zbl
[24] Mira C., Gardini L., Barugola A., Cathala J-C., Chaotic dynamics in two-dimensional noninvertible maps, World Scientific, Singapore, 1996 | DOI | MR | Zbl