Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka--Volterra model
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the study presented in this article is to analyze the possible dynamic modes of the deterministic and stochastic Lotka–Volterra model. Depending on the two parameters of the system, a map of regimes is constructed. Parametric areas of existence of stable equilibria, cycles, closed invariant curves, and also chaotic attractors are studied. The bifurcations such as the period doubling, Neimark–Sacker and the crisis are described. The complex shape of the basins of attraction of irregular attractors (closed invariant curve and chaos) is demonstrated. In addition to the deterministic system, the stochastic system, which describes the influence of external random influence, is discussed. Here, the key is to find the sensitivity of such complex attractors as a closed invariant curve and chaos. In the case of chaos, an algorithm to find critical lines giving the boundary of a chaotic attractor, is described. Based on the found function of stochastic sensitivity, confidence domains are constructed that allow us to describe the form of random states around a deterministic attractor.
Keywords: population dynamics, stochastic sensitivity, closed invariant curve.
Mots-clés : chaos
@article{IIMI_2020_55_a1,
     author = {A. V. Belyaev and T. V. Perevalova},
     title = {Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete {Lotka--Volterra} model},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {55},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/}
}
TY  - JOUR
AU  - A. V. Belyaev
AU  - T. V. Perevalova
TI  - Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka--Volterra model
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 19
EP  - 32
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/
LA  - ru
ID  - IIMI_2020_55_a1
ER  - 
%0 Journal Article
%A A. V. Belyaev
%A T. V. Perevalova
%T Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka--Volterra model
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 19-32
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/
%G ru
%F IIMI_2020_55_a1
A. V. Belyaev; T. V. Perevalova. Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka--Volterra model. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 19-32. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a1/

[1] Neverova G. P., Zhdanova O. L., Ghosh B., Frisman E. Y., “Dynamics of a discrete-time stage-structured predator–prey system with Holling type II response function”, Nonlinear Dynamics, 98:1 (2019), 427–446 | DOI | Zbl

[2] Khan A. Q., “Bifurcations of a two-dimensional discrete-time predator–prey model”, Advances in Difference Equations, 2019 (2019) | DOI | MR

[3] Pal S., Pal N., Chattopadhyay J., “Hunting cooperation in a discrete-time predator–prey system”, International Journal of Bifurcation and Chaos, 28:7 (2018), 1850083 | DOI | MR | Zbl

[4] Zhao M., Li C. P., Wang J. L., “Complex dynamic behaviors of a discrete-time predator–prey system”, Journal of Applied Analysis and Computation, 7:2 (2017), 478–500 | DOI | MR

[5] Saratchandran P. P., Ajithprasad K. C., Harikrishnan K. P., “Numerical exploration of the parameter plane in a discrete predator–prey model”, Ecological Complexity, 21 (2015), 112–119 | DOI

[6] ReniSagayaRaj M., George Maria Selvam A., Dhineshbabu R., “Stability in a discrete nonlinear prey–predator model with functional response”, International Journal of Emerging Technologies in Computational and Applied Sciences, 7:2 (2014), 190–193

[7] ReniSagayaRaj M., George Maria Selvam A., Meganathan M., “Dynamics in a discrete prey–predator system”, International Journal of Engineering Research and Development, 6:5 (2013), 1–5

[8] Elsadany A. A. E., El-Metwally H. A., Elabbasy E. M., Agiza H. N., “Chaos and bifurcation of a nonlinear discrete prey–predator system”, Computational Ecology and Software, 2:3 (2012), 169–180 http://www.iaees.org/publications/journals/ces/articles/2012-2(3)/2012-2(3).asp

[9] Ren J. L., Yu L. P., Siegmund S., “Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response”, Nonlinear Dynamics, 90:1 (2017), 19–41 | DOI | MR | Zbl

[10] Avrutin V., Gardini L., Sushko I., Tramontana F., Continuous and discontinuous piecewise–smooth one–dimensional maps: Invariant sets and bifurcation structures, World Scientific, Singapore, 2019 | DOI | MR | Zbl

[11] Allen L. J. S., Fagan J. F., H{ö}gn{ä}s G., Fagerholm H., “Population extinction in discrete-time stochastic population models with an Allee effect”, Journal of Difference Equations and Applications, 11:4–5 (2005), 273–293 | DOI | MR | Zbl

[12] Bashkirtseva I. A., “Stochastic sensitivity synthesis in discrete-time systems with parametric noise”, IFAC-PapersOnLine, 51:32 (2018), 610–614 | DOI | MR

[13] Bashkirtseva I., Tsvetkov I., “Impact of the parametric noise on map-based dynamical systems”, AIP Conference Proceedings, 2025 (2018), 040004 | DOI | MR

[14] Bashkirtseva I., Ekaterinchuk E., Ryashko L., “Analysis of noise-induced transitions in a generalized logistic model with delay near Neimark–Sacker bifurcation”, Journal of Physics A: Mathematical and Theoretical, 50:27 (2017), 275102 | DOI | MR | Zbl

[15] Bashkirtseva I., Ryashko L., “Noise-induced shifts in the population model with a weak Allee effect”, Physica A: Statistical Mechanics and its Applications, 491 (2018), 28–36 | DOI | MR

[16] Bashkirtseva I., Ryashko L., “Stochastic sensitivity analysis of noise-induced extinction in the Ricker model with delay and Allee effect”, Bulletin of Mathematical Biology, 80:6 (2018), 1596–1614 | DOI | MR | Zbl

[17] Jungeilges J., Ryazanova T., “Transitions in consumption behaviors in a peer-driven stochastic consumer network”, Chaos, Solitons and Fractals, 128 (2019), 144–154 | DOI | MR

[18] Belyaev A. V., Ryazanova T. V., “The stochastic sensitivity function method in analysis of the piecewise-smooth model of population dynamics”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 36–47 | DOI | MR

[19] Belyaev A., Ryazanova T., “Stochastic sensitivity of attractors for a piecewise smooth neuron model”, Journal of Difference Equations and Applications, 25:9–10 (2019), 1468–1487 | DOI | MR | Zbl

[20] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity analysis of the attractors for the randomly forced Ricker model with delay”, Physics Letters A, 378:48 (2014), 3600–3606 | DOI | MR | Zbl

[21] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps”, Chaos, Solitons and Fractals, 126 (2019), 78–84 | DOI | MR

[22] Zhao Ming, Xuan Zuxing, Li Cuiping, “Dynamics of a discrete-time predator-prey system”, Advances in Difference Equations, 2016:1 (2016) | DOI | MR

[23] Bischi G-I., Stefanini L., Gardini L., “Synchronization, intermittency and critical curves in a duopoly game”, Mathematics and Computers in Simulation, 44:6 (1998), 559–585 | DOI | MR | Zbl

[24] Mira C., Gardini L., Barugola A., Cathala J-C., Chaotic dynamics in two-dimensional noninvertible maps, World Scientific, Singapore, 1996 | DOI | MR | Zbl