Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a0, author = {E. P. Abramova and T. V. Perevalova}, title = {Influence of random effects on the equilibrium modes in the population dynamics model}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--18}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/} }
TY - JOUR AU - E. P. Abramova AU - T. V. Perevalova TI - Influence of random effects on the equilibrium modes in the population dynamics model JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 3 EP - 18 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/ LA - ru ID - IIMI_2020_55_a0 ER -
%0 Journal Article %A E. P. Abramova %A T. V. Perevalova %T Influence of random effects on the equilibrium modes in the population dynamics model %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 3-18 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/ %G ru %F IIMI_2020_55_a0
E. P. Abramova; T. V. Perevalova. Influence of random effects on the equilibrium modes in the population dynamics model. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 3-18. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/
[1] Aponina E. A., Aponin Yu. M., Bazykin A. D., “Analysis of complex dynamic behavior in the model “predator–two preys””, Problemy ekologicheskogo monitoringa i modelirovania ekosistem, v. 5, Gidrometeoizdat, L., 1982, 163–180 (in Russian)
[2] Bazykin A. D. Volterra system and Michaelis–Menten equation, Voprosy Matematicheskoi Genetiki, v. 5, Akad. Nauk USSR, Novosibirsk, 1974, 103–143
[3] Bazykin A. D., Nonlinear dynamics of interacting populations, Institute of Computer Science, M.–Izhevsk, 2003 | MR
[4] Bashkirtseva I. A., Ryashko L. B., “Quasipotential method in the study of local stability of limit cycles to the random perturbations”, Izvestiya VUZ. Applied Nonlinear Dynamics, 9:6 (2001), 104–114 (in Russian) | Zbl
[5] Bashkirtseva I. A., Karpenko L. V., Ryashko L. B., “Stochastic sensitivity of the limit cycles of the model “predator–two preys””, Izvestiya VUZ. Applied Nonlinear Dynamics, 18:6 (2010), 42–64 (in Russian) | DOI | MR | Zbl
[6] Ventsel' A. D., Freidlin M. I., Fluctuations in dynamical systems under the influence of small random perturbation, Nauka, M., 1979
[7] Mil'shtein G. N., Ryashko L. B., “A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations”, Journal of Applied Mathematics and Mechanics, 59:1 (1995), 47–56 | DOI | MR | MR
[8] Arumugam R., Banerjee T., Dutta P. S., “Rhythmogenesis, birhythmicity and chaos in a metapopulation model”, The European Physical Journal Special Topics, 226:9 (2017), 2145–2156 | DOI
[9] Bashkirtseva I. A., Fedotov S. P., Ryashko L. B., Slepukhina E. S., “Stochastic bifurcations and noise-induced chaos in 3D neuron model”, International Journal of Bifurcation and Chaos, 26:12 (2016), 1630032 | DOI | MR | Zbl
[10] Bashkirtseva I. A., Neiman A. B., Ryashko L. B., “Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin–Huxley neuron model”, Physical Review E, 91:5 (2015), 052920 | DOI | MR
[11] Bashkirtseva I. A., Ryashko L. B., Ryazanova T. V., “Stochastic sensitivity technique in a persistence analysis of randomly forced population systems with multiple trophic levels”, Mathematical Biosciences, 293 (2017), 38–45 | DOI | MR | Zbl
[12] Bashkirtseva I. A., Ryashko L. B., Ryazanova T. V., “Analysis of noise-induced bifurcations in the stochastic tritrophic population system”, International Journal of Bifurcation and Chaos, 27:13 (2017), 1750208 | DOI | MR | Zbl
[13] Biswas S., Sasmal S. K., Samanta S., Saifuddin Md., Pal N., Chattopadhyay J., “Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects”, Nonlinear Dynamics, 87:3 (2017), 1553–1573 | DOI | Zbl
[14] Castellanos V., Chan-López R. E., “Existence of limit cycles in a three level trophic chain with Lotka–Volterra and Holling type II functional responses”, Chaos, Solitons and Fractals, 95 (2017), 157–167 | DOI | MR | Zbl
[15] Das K. P., Chattopadhyay J., “Role of environmental disturbance in an eco-epidemiological model with disease from external source”, Mathematical Methods in the Applied Sciences, 35:6 (2012), 659–675 | DOI | MR | Zbl
[16] Dobramysl U., Mobilia M., Pleimling M., T{ä}uber U. C., “Stochastic population dynamics in spatially extended predator–prey systems”, Journal of Physics A: Mathematical and Theoretical, 51:6 (2018), 063001 | DOI | MR | Zbl
[17] Foryś U., Qiao M., Liu A., “Asymptotic dynamics of a deterministic and stochastic predator–prey model with disease in the prey species”, Mathematical Methods in the Applied Sciences, 37:3 (2013), 306–320 | DOI | MR
[18] Liu Q., Jiang D., Shi N., Hayat T., Ahmad B., “Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence”, Physica A: Statistical Mechanics and its Applications, 476 (2017), 58–69 | DOI | MR
[19] Mandal P. S., Banerjee M., “Stochastic persistence and stability analysis of a modified Holling–Tanner model”, Mathematical Methods in the Applied Sciences, 36:10 (2013), 1263–1280 | DOI | MR | Zbl
[20] Revutskaya O., Neverova G., Frisman E., “Complex dynamic modes in a two-sex age-structured population model”, Developments in Environmental Modelling, 25 (2012), 149–162 | DOI
[21] Slepukhina E., Ryashko L., K{ü}gler P., “Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model”, Chaos, Solitons and Fractals, 131 (2020), 109515 | DOI | MR
[22] Terry A. J., “A population model with birth pulses, age structure, and non-overlapping generations”, Applied Mathematics and Computation, 271 (2015), 400–417 | DOI | MR | Zbl
[23] Wang S., Ma Zh., Wang W., “Dynamical behavior of a generalized eco-epidemiological system with prey refuge”, Advances in Difference Equations, 2018:1 (2018), 1687–1847 | DOI | MR