Influence of random effects on the equilibrium modes in the population dynamics model
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study a dynamic model of interacting populations of the type “predator–two prey”. A detailed parametric analysis of the equilibrium modes arising in the system is carried out. In zones of the bifurcation parameter, where the coexistence of several equilibrium regimes is found, separable surfaces are constructed. Those surfaces are the boundaries of the attraction basins of different equilibria. It is shown that the effect of an external random disturbance can destroy the equilibrium mode of coexistence of three populations and lead to a qualitatively different mode of coexistence. Such qualitative changes lead to the extinction of one or two of the three populations. Using the technique of stochastic sensitivity function and the method of confidence domains, the probabilistic mechanisms of destruction of equilibrium modes are demonstrated. A parametric analysis of the probabilities of extinction of populations for two types is carried out. The range of the bifurcation parameter and the level of noise intensity, that are the most favorable for the coexistence of three populations, are discussed.
Keywords: population dynamics, stochastic sensitivity, noise-induced extinction.
@article{IIMI_2020_55_a0,
     author = {E. P. Abramova and T. V. Perevalova},
     title = {Influence of random effects on the equilibrium modes in the population dynamics model},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {55},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/}
}
TY  - JOUR
AU  - E. P. Abramova
AU  - T. V. Perevalova
TI  - Influence of random effects on the equilibrium modes in the population dynamics model
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 3
EP  - 18
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/
LA  - ru
ID  - IIMI_2020_55_a0
ER  - 
%0 Journal Article
%A E. P. Abramova
%A T. V. Perevalova
%T Influence of random effects on the equilibrium modes in the population dynamics model
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 3-18
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/
%G ru
%F IIMI_2020_55_a0
E. P. Abramova; T. V. Perevalova. Influence of random effects on the equilibrium modes in the population dynamics model. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 3-18. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a0/

[1] Aponina E. A., Aponin Yu. M., Bazykin A. D., “Analysis of complex dynamic behavior in the model “predator–two preys””, Problemy ekologicheskogo monitoringa i modelirovania ekosistem, v. 5, Gidrometeoizdat, L., 1982, 163–180 (in Russian)

[2] Bazykin A. D. Volterra system and Michaelis–Menten equation, Voprosy Matematicheskoi Genetiki, v. 5, Akad. Nauk USSR, Novosibirsk, 1974, 103–143

[3] Bazykin A. D., Nonlinear dynamics of interacting populations, Institute of Computer Science, M.–Izhevsk, 2003 | MR

[4] Bashkirtseva I. A., Ryashko L. B., “Quasipotential method in the study of local stability of limit cycles to the random perturbations”, Izvestiya VUZ. Applied Nonlinear Dynamics, 9:6 (2001), 104–114 (in Russian) | Zbl

[5] Bashkirtseva I. A., Karpenko L. V., Ryashko L. B., “Stochastic sensitivity of the limit cycles of the model “predator–two preys””, Izvestiya VUZ. Applied Nonlinear Dynamics, 18:6 (2010), 42–64 (in Russian) | DOI | MR | Zbl

[6] Ventsel' A. D., Freidlin M. I., Fluctuations in dynamical systems under the influence of small random perturbation, Nauka, M., 1979

[7] Mil'shtein G. N., Ryashko L. B., “A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations”, Journal of Applied Mathematics and Mechanics, 59:1 (1995), 47–56 | DOI | MR | MR

[8] Arumugam R., Banerjee T., Dutta P. S., “Rhythmogenesis, birhythmicity and chaos in a metapopulation model”, The European Physical Journal Special Topics, 226:9 (2017), 2145–2156 | DOI

[9] Bashkirtseva I. A., Fedotov S. P., Ryashko L. B., Slepukhina E. S., “Stochastic bifurcations and noise-induced chaos in 3D neuron model”, International Journal of Bifurcation and Chaos, 26:12 (2016), 1630032 | DOI | MR | Zbl

[10] Bashkirtseva I. A., Neiman A. B., Ryashko L. B., “Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin–Huxley neuron model”, Physical Review E, 91:5 (2015), 052920 | DOI | MR

[11] Bashkirtseva I. A., Ryashko L. B., Ryazanova T. V., “Stochastic sensitivity technique in a persistence analysis of randomly forced population systems with multiple trophic levels”, Mathematical Biosciences, 293 (2017), 38–45 | DOI | MR | Zbl

[12] Bashkirtseva I. A., Ryashko L. B., Ryazanova T. V., “Analysis of noise-induced bifurcations in the stochastic tritrophic population system”, International Journal of Bifurcation and Chaos, 27:13 (2017), 1750208 | DOI | MR | Zbl

[13] Biswas S., Sasmal S. K., Samanta S., Saifuddin Md., Pal N., Chattopadhyay J., “Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects”, Nonlinear Dynamics, 87:3 (2017), 1553–1573 | DOI | Zbl

[14] Castellanos V., Chan-López R. E., “Existence of limit cycles in a three level trophic chain with Lotka–Volterra and Holling type II functional responses”, Chaos, Solitons and Fractals, 95 (2017), 157–167 | DOI | MR | Zbl

[15] Das K. P., Chattopadhyay J., “Role of environmental disturbance in an eco-epidemiological model with disease from external source”, Mathematical Methods in the Applied Sciences, 35:6 (2012), 659–675 | DOI | MR | Zbl

[16] Dobramysl U., Mobilia M., Pleimling M., T{ä}uber U. C., “Stochastic population dynamics in spatially extended predator–prey systems”, Journal of Physics A: Mathematical and Theoretical, 51:6 (2018), 063001 | DOI | MR | Zbl

[17] Foryś U., Qiao M., Liu A., “Asymptotic dynamics of a deterministic and stochastic predator–prey model with disease in the prey species”, Mathematical Methods in the Applied Sciences, 37:3 (2013), 306–320 | DOI | MR

[18] Liu Q., Jiang D., Shi N., Hayat T., Ahmad B., “Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence”, Physica A: Statistical Mechanics and its Applications, 476 (2017), 58–69 | DOI | MR

[19] Mandal P. S., Banerjee M., “Stochastic persistence and stability analysis of a modified Holling–Tanner model”, Mathematical Methods in the Applied Sciences, 36:10 (2013), 1263–1280 | DOI | MR | Zbl

[20] Revutskaya O., Neverova G., Frisman E., “Complex dynamic modes in a two-sex age-structured population model”, Developments in Environmental Modelling, 25 (2012), 149–162 | DOI

[21] Slepukhina E., Ryashko L., K{ü}gler P., “Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model”, Chaos, Solitons and Fractals, 131 (2020), 109515 | DOI | MR

[22] Terry A. J., “A population model with birth pulses, age structure, and non-overlapping generations”, Applied Mathematics and Computation, 271 (2015), 400–417 | DOI | MR | Zbl

[23] Wang S., Ma Zh., Wang W., “Dynamical behavior of a generalized eco-epidemiological system with prey refuge”, Advances in Difference Equations, 2018:1 (2018), 1687–1847 | DOI | MR