Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_54_a5, author = {V. N. Ushakov and A. A. Ershov and M. V. Pershakov}, title = {On one addition to evaluation by {L.\,S.~Pontryagin} of the geometric difference of sets in a plane}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {63--73}, publisher = {mathdoc}, volume = {54}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a5/} }
TY - JOUR AU - V. N. Ushakov AU - A. A. Ershov AU - M. V. Pershakov TI - On one addition to evaluation by L.\,S.~Pontryagin of the geometric difference of sets in a plane JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 63 EP - 73 VL - 54 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a5/ LA - ru ID - IIMI_2019_54_a5 ER -
%0 Journal Article %A V. N. Ushakov %A A. A. Ershov %A M. V. Pershakov %T On one addition to evaluation by L.\,S.~Pontryagin of the geometric difference of sets in a plane %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 63-73 %V 54 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a5/ %G ru %F IIMI_2019_54_a5
V. N. Ushakov; A. A. Ershov; M. V. Pershakov. On one addition to evaluation by L.\,S.~Pontryagin of the geometric difference of sets in a plane. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 63-73. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a5/
[1] Uspenskii A. A., Ushakov V. N., Fomin A. N., $\alpha$-sets and their properties, Deposited in VINITI 02.04.2004, No 543-B2004, IMM UB RAS, Yekaterinburg, 2004, 62 pp. (in Russian)
[2] Ivanov G. E., Weak convex sets and functions: theory and applications, Fizmatlit, M., 2006
[3] Zelinskii Yu.B., Convexity. Selected chapters, Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, 2012
[4] Ngai H. V., Penot J.-P., “Paraconvex functions and paraconvex sets”, Studia Mathematica, 184:1 (2008), 1–29 | DOI | MR | Zbl
[5] Semenov P. V., “Functionally paraconvex sets”, Mathematical Notes, 54:6 (1993), 1236–1240 | DOI | MR | Zbl
[6] Ershov A. A., Pershakov M. V., “On matching up the alpha-sets with other generalizations of convex sets”, VI Information school of a young scientist, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2018, 143–150 (in Russian) | DOI
[7] Ivanov G. E., “Weakly convex sets and their properties”, Mathematical Notes, 79:1–2 (2006), 55–78 | DOI | DOI | MR | Zbl
[8] Ivanov G. E., Polovinkin E. S., “Second-order convergence of an algorithm calculating the value of linear differential games”, Doklady Mathematics, 51:1 (1995), 29–32 | Zbl
[9] Ivanov G. E., Golubev M. O., “Strong and weak convexity in nonlinear differential games”, IFAC-PapersOnline, 51:32 (2018), 13–18 | DOI
[10] Pontrjagin L. S., “Linear differential games of pursuit”, Mathematics of the USSR-Sbornik, 40:3 (1981), 285–303 | DOI | Zbl
[11] Gruber P. M., Lekkerkerker C. G., Geometry of numbers, North-Holland, 1987 | MR | Zbl
[12] Mahler K. Ein Übertragunsprinzip für konvexe Kǒrper, Časopis Pěst. Mat. Fys., 68 (1939), 93–102 | MR
[13] Sawyer D. B., “The lattice determinants of asymmetric convex regions”, J. London Math. Soc., 29 (1954), 251–254 | DOI | MR | Zbl
[14] Polovinkin E. S., Balashov M. V., Elements of convex and strongly convex analysis, Fizmatlit, M., 2007
[15] Starr R. M., “Quasi-equilibria in markets with non-convex preferences”, Econometrica, 37:1 (1969), 25–38 | DOI | Zbl
[16] Garkavi A. L., “On the Chebyshev center and convex hull of a set”, Uspekhi Mat. Nauk, 19:6 (1964), 139–145 (in Russian) | Zbl
[17] Ushakov V. N., Ershov A. A., “An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 24, no. 1, 223–235 (in Russian) | DOI